Spaces:
Running
Running
''' | |
* Copyright (c) 2022, salesforce.com, inc. | |
* All rights reserved. | |
* SPDX-License-Identifier: BSD-3-Clause | |
* For full license text, see LICENSE.txt file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
* By Junnan Li | |
''' | |
import warnings | |
warnings.filterwarnings("ignore") | |
from .blip_vit import VisionTransformer, interpolate_pos_embed | |
from .blip_med import BertConfig, BertModel, BertLMHeadModel | |
from transformers import BertTokenizer | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
import os | |
from urllib.parse import urlparse | |
from timm.models.hub import download_cached_file | |
import numpy as np | |
from pathlib import Path | |
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__)) | |
# BLIP | |
class BLIP_Base(nn.Module): | |
def __init__(self, | |
med_config = Path(LOCAL_PATH, 'blip_configs/med_config.json'), | |
image_size = 224, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) | |
self.tokenizer = init_tokenizer() | |
med_config = BertConfig.from_json_file(med_config) | |
med_config.encoder_width = vision_width | |
self.text_encoder = BertModel(config=med_config, add_pooling_layer=False) | |
def forward(self, image, caption, mode): | |
assert mode in ['image', 'text', 'multimodal'], "mode parameter must be image, text, or multimodal" | |
text = self.tokenizer(caption, return_tensors="pt").to(image.device) | |
if mode=='image': | |
# return image features | |
image_embeds = self.visual_encoder(image) | |
return image_embeds | |
elif mode=='text': | |
# return text features | |
text_output = self.text_encoder(text.input_ids, attention_mask = text.attention_mask, | |
return_dict = True, mode = 'text') | |
return text_output.last_hidden_state | |
elif mode=='multimodal': | |
# return multimodel features | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
text.input_ids[:,0] = self.tokenizer.enc_token_id | |
output = self.text_encoder(text.input_ids, | |
attention_mask = text.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
return_dict = True, | |
) | |
return output.last_hidden_state | |
class BLIP_Decoder(nn.Module): | |
def __init__(self, | |
med_config = Path(LOCAL_PATH, 'blip_configs/med_config.json'), | |
image_size = 384, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
prompt = 'a picture of ', | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit(vit,image_size, vit_grad_ckpt, vit_ckpt_layer) | |
self.tokenizer = init_tokenizer() | |
med_config = BertConfig.from_json_file(med_config) | |
med_config.encoder_width = vision_width | |
self.text_decoder = BertLMHeadModel(config=med_config) | |
self.prompt = prompt | |
self.prompt_length = len(self.tokenizer(self.prompt).input_ids)-1 | |
def forward(self, image, caption): | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
text = self.tokenizer(caption, padding='longest', truncation=True, max_length=40, return_tensors="pt").to(image.device) | |
text.input_ids[:,0] = self.tokenizer.bos_token_id | |
decoder_targets = text.input_ids.masked_fill(text.input_ids == self.tokenizer.pad_token_id, -100) | |
decoder_targets[:,:self.prompt_length] = -100 | |
decoder_output = self.text_decoder(text.input_ids, | |
attention_mask = text.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
labels = decoder_targets, | |
return_dict = True, | |
) | |
loss_lm = decoder_output.loss | |
return loss_lm | |
def generate(self, image, sample=False, num_beams=3, max_length=30, min_length=10, top_p=0.9, repetition_penalty=1.0): | |
image_embeds = self.visual_encoder(image) | |
if not sample: | |
image_embeds = image_embeds.repeat_interleave(num_beams,dim=0) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
model_kwargs = {"encoder_hidden_states": image_embeds, "encoder_attention_mask":image_atts} | |
prompt = [self.prompt] * image.size(0) | |
input_ids = self.tokenizer(prompt, return_tensors="pt").input_ids.to(image.device) | |
input_ids[:,0] = self.tokenizer.bos_token_id | |
input_ids = input_ids[:, :-1] | |
if sample: | |
#nucleus sampling | |
outputs = self.text_decoder.generate(input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
do_sample=True, | |
top_p=top_p, | |
num_return_sequences=1, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=1.1, | |
**model_kwargs) | |
else: | |
#beam search | |
outputs = self.text_decoder.generate(input_ids=input_ids, | |
max_length=max_length, | |
min_length=min_length, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
repetition_penalty=repetition_penalty, | |
**model_kwargs) | |
captions = [] | |
for output in outputs: | |
caption = self.tokenizer.decode(output, skip_special_tokens=True) | |
captions.append(caption[len(self.prompt):]) | |
return captions | |
def blip_decoder(pretrained='',**kwargs): | |
model = BLIP_Decoder(**kwargs) | |
if pretrained: | |
model,msg = load_checkpoint(model,pretrained) | |
assert(len(msg.missing_keys)==0) | |
return model | |
def blip_feature_extractor(pretrained='',**kwargs): | |
model = BLIP_Base(**kwargs) | |
if pretrained: | |
model,msg = load_checkpoint(model,pretrained) | |
assert(len(msg.missing_keys)==0) | |
return model | |
def init_tokenizer(): | |
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
tokenizer.add_special_tokens({'bos_token':'[DEC]'}) | |
tokenizer.add_special_tokens({'additional_special_tokens':['[ENC]']}) | |
tokenizer.enc_token_id = tokenizer.additional_special_tokens_ids[0] | |
return tokenizer | |
def create_vit(vit, image_size, use_grad_checkpointing=False, ckpt_layer=0, drop_path_rate=0): | |
assert vit in ['base', 'large'], "vit parameter must be base or large" | |
if vit=='base': | |
vision_width = 768 | |
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=12, | |
num_heads=12, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
drop_path_rate=0 or drop_path_rate | |
) | |
elif vit=='large': | |
vision_width = 1024 | |
visual_encoder = VisionTransformer(img_size=image_size, patch_size=16, embed_dim=vision_width, depth=24, | |
num_heads=16, use_grad_checkpointing=use_grad_checkpointing, ckpt_layer=ckpt_layer, | |
drop_path_rate=0.1 or drop_path_rate | |
) | |
return visual_encoder, vision_width | |
def is_url(url_or_filename): | |
parsed = urlparse(url_or_filename) | |
return parsed.scheme in ("http", "https") | |
def load_checkpoint(model,url_or_filename): | |
if is_url(url_or_filename): | |
cached_file = download_cached_file(url_or_filename, check_hash=False, progress=True) | |
checkpoint = torch.load(cached_file, map_location='cpu') | |
elif os.path.isfile(url_or_filename): | |
checkpoint = torch.load(url_or_filename, map_location='cpu') | |
else: | |
raise RuntimeError('checkpoint url or path is invalid') | |
state_dict = checkpoint['model'] | |
state_dict['visual_encoder.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'],model.visual_encoder) | |
if 'visual_encoder_m.pos_embed' in model.state_dict().keys(): | |
state_dict['visual_encoder_m.pos_embed'] = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'], | |
model.visual_encoder_m) | |
for key in model.state_dict().keys(): | |
if key in state_dict.keys(): | |
if state_dict[key].shape!=model.state_dict()[key].shape: | |
del state_dict[key] | |
msg = model.load_state_dict(state_dict,strict=False) | |
print('load checkpoint from %s'%url_or_filename) | |
return model,msg | |
# BLIP VQA | |
class BLIP_VQA(nn.Module): | |
def __init__(self, | |
med_config = Path(LOCAL_PATH, 'blip_configs/med_config.json'), | |
image_size = 480, | |
vit = 'base', | |
vit_grad_ckpt = False, | |
vit_ckpt_layer = 0, | |
): | |
""" | |
Args: | |
med_config (str): path for the mixture of encoder-decoder model's configuration file | |
image_size (int): input image size | |
vit (str): model size of vision transformer | |
""" | |
super().__init__() | |
self.visual_encoder, vision_width = create_vit(vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1) | |
self.tokenizer = init_tokenizer() | |
encoder_config = BertConfig.from_json_file(med_config) | |
encoder_config.encoder_width = vision_width | |
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False) | |
decoder_config = BertConfig.from_json_file(med_config) | |
self.text_decoder = BertLMHeadModel(config=decoder_config) | |
def forward(self, image, question, answer=None, n=None, weights=None, train=True, inference='rank', k_test=128): | |
image_embeds = self.visual_encoder(image) | |
image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(image.device) | |
question = self.tokenizer(question, padding='longest', truncation=True, max_length=35, | |
return_tensors="pt").to(image.device) | |
question.input_ids[:,0] = self.tokenizer.enc_token_id | |
if train: | |
''' | |
n: number of answers for each question | |
weights: weight for each answer | |
''' | |
answer = self.tokenizer(answer, padding='longest', return_tensors="pt").to(image.device) | |
answer.input_ids[:,0] = self.tokenizer.bos_token_id | |
answer_targets = answer.input_ids.masked_fill(answer.input_ids == self.tokenizer.pad_token_id, -100) | |
question_output = self.text_encoder(question.input_ids, | |
attention_mask = question.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
return_dict = True) | |
question_states = [] | |
question_atts = [] | |
for b, n in enumerate(n): | |
question_states += [question_output.last_hidden_state[b]]*n | |
question_atts += [question.attention_mask[b]]*n | |
question_states = torch.stack(question_states,0) | |
question_atts = torch.stack(question_atts,0) | |
answer_output = self.text_decoder(answer.input_ids, | |
attention_mask = answer.attention_mask, | |
encoder_hidden_states = question_states, | |
encoder_attention_mask = question_atts, | |
labels = answer_targets, | |
return_dict = True, | |
reduction = 'none', | |
) | |
loss = weights * answer_output.loss | |
loss = loss.sum()/image.size(0) | |
return loss | |
else: | |
question_output = self.text_encoder(question.input_ids, | |
attention_mask = question.attention_mask, | |
encoder_hidden_states = image_embeds, | |
encoder_attention_mask = image_atts, | |
return_dict = True) | |
if inference=='generate': | |
num_beams = 3 | |
question_states = question_output.last_hidden_state.repeat_interleave(num_beams,dim=0) | |
question_atts = torch.ones(question_states.size()[:-1],dtype=torch.long).to(question_states.device) | |
model_kwargs = {"encoder_hidden_states": question_states, "encoder_attention_mask":question_atts} | |
bos_ids = torch.full((image.size(0),1),fill_value=self.tokenizer.bos_token_id,device=image.device) | |
outputs = self.text_decoder.generate(input_ids=bos_ids, | |
max_length=10, | |
min_length=1, | |
num_beams=num_beams, | |
eos_token_id=self.tokenizer.sep_token_id, | |
pad_token_id=self.tokenizer.pad_token_id, | |
**model_kwargs) | |
answers = [] | |
for output in outputs: | |
answer = self.tokenizer.decode(output, skip_special_tokens=True) | |
answers.append(answer) | |
return answers | |
elif inference=='rank': | |
max_ids = self.rank_answer(question_output.last_hidden_state, question.attention_mask, | |
answer.input_ids, answer.attention_mask, k_test) | |
return max_ids | |
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k): | |
num_ques = question_states.size(0) | |
start_ids = answer_ids[0,0].repeat(num_ques,1) # bos token | |
start_output = self.text_decoder(start_ids, | |
encoder_hidden_states = question_states, | |
encoder_attention_mask = question_atts, | |
return_dict = True, | |
reduction = 'none') | |
logits = start_output.logits[:,0,:] # first token's logit | |
# topk_probs: top-k probability | |
# topk_ids: [num_question, k] | |
answer_first_token = answer_ids[:,1] | |
prob_first_token = F.softmax(logits,dim=1).index_select(dim=1, index=answer_first_token) | |
topk_probs, topk_ids = prob_first_token.topk(k,dim=1) | |
# answer input: [num_question*k, answer_len] | |
input_ids = [] | |
input_atts = [] | |
for b, topk_id in enumerate(topk_ids): | |
input_ids.append(answer_ids.index_select(dim=0, index=topk_id)) | |
input_atts.append(answer_atts.index_select(dim=0, index=topk_id)) | |
input_ids = torch.cat(input_ids,dim=0) | |
input_atts = torch.cat(input_atts,dim=0) | |
targets_ids = input_ids.masked_fill(input_ids == self.tokenizer.pad_token_id, -100) | |
# repeat encoder's output for top-k answers | |
question_states = tile(question_states, 0, k) | |
question_atts = tile(question_atts, 0, k) | |
output = self.text_decoder(input_ids, | |
attention_mask = input_atts, | |
encoder_hidden_states = question_states, | |
encoder_attention_mask = question_atts, | |
labels = targets_ids, | |
return_dict = True, | |
reduction = 'none') | |
log_probs_sum = -output.loss | |
log_probs_sum = log_probs_sum.view(num_ques,k) | |
max_topk_ids = log_probs_sum.argmax(dim=1) | |
max_ids = topk_ids[max_topk_ids>=0,max_topk_ids] | |
return max_ids | |
def blip_vqa(pretrained='',**kwargs): | |
model = BLIP_VQA(**kwargs) | |
if pretrained: | |
model,msg = load_checkpoint(model,pretrained) | |
# assert(len(msg.missing_keys)==0) | |
return model | |
def tile(x, dim, n_tile): | |
init_dim = x.size(dim) | |
repeat_idx = [1] * x.dim() | |
repeat_idx[dim] = n_tile | |
x = x.repeat(*(repeat_idx)) | |
order_index = torch.LongTensor(np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])) | |
return torch.index_select(x, dim, order_index.to(x.device)) | |