import numpy as np from torch import Tensor import folder_paths import comfy.sample from comfy.model_patcher import ModelPatcher from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet, is_sd3_advanced_controlnet from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, AbstractPreprocWrapper, BIGMAX from .nodes_weight import (DefaultWeights, ScaledSoftMaskedUniversalWeights, ScaledSoftUniversalWeights, SoftControlNetWeightsSD15, CustomControlNetWeightsSD15, CustomControlNetWeightsFlux, SoftT2IAdapterWeights, CustomT2IAdapterWeights) from .nodes_keyframes import (LatentKeyframeGroupNode, LatentKeyframeInterpolationNode, LatentKeyframeBatchedGroupNode, LatentKeyframeNode, TimestepKeyframeNode, TimestepKeyframeInterpolationNode, TimestepKeyframeFromStrengthListNode) from .nodes_sparsectrl import SparseCtrlMergedLoaderAdvanced, SparseCtrlLoaderAdvanced, SparseIndexMethodNode, SparseSpreadMethodNode, RgbSparseCtrlPreprocessor, SparseWeightExtras from .nodes_reference import ReferenceControlNetNode, ReferenceControlFinetune, ReferencePreprocessorNode from .nodes_plusplus import PlusPlusLoaderAdvanced, PlusPlusLoaderSingle, PlusPlusInputNode from .nodes_loosecontrol import ControlNetLoaderWithLoraAdvanced from .nodes_deprecated import (LoadImagesFromDirectory, ScaledSoftUniversalWeightsDeprecated, SoftControlNetWeightsDeprecated, CustomControlNetWeightsDeprecated, SoftT2IAdapterWeightsDeprecated, CustomT2IAdapterWeightsDeprecated) from .logger import logger from .sampling import acn_sample_factory # inject sample functions comfy.sample.sample = acn_sample_factory(comfy.sample.sample) comfy.sample.sample_custom = acn_sample_factory(comfy.sample.sample_custom, is_custom=True) class ControlNetLoaderAdvanced: @classmethod def INPUT_TYPES(s): return { "required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), ), }, "optional": { "tk_optional": ("TIMESTEP_KEYFRAME", ), } } RETURN_TYPES = ("CONTROL_NET", ) FUNCTION = "load_controlnet" CATEGORY = "Adv-ControlNet ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…" def load_controlnet(self, control_net_name, tk_optional: TimestepKeyframeGroup=None, timestep_keyframe: TimestepKeyframeGroup=None, ): if timestep_keyframe is not None: # backwards compatibility tk_optional = timestep_keyframe controlnet_path = folder_paths.get_full_path("controlnet", control_net_name) controlnet = load_controlnet(controlnet_path, tk_optional) return (controlnet,) class DiffControlNetLoaderAdvanced: @classmethod def INPUT_TYPES(s): return { "required": { "model": ("MODEL",), "control_net_name": (folder_paths.get_filename_list("controlnet"), ) }, "optional": { "tk_optional": ("TIMESTEP_KEYFRAME", ), "autosize": ("ACNAUTOSIZE", {"padding": 160}), } } RETURN_TYPES = ("CONTROL_NET", ) FUNCTION = "load_controlnet" CATEGORY = "Adv-ControlNet ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…" def load_controlnet(self, control_net_name, model, tk_optional: TimestepKeyframeGroup=None, timestep_keyframe: TimestepKeyframeGroup=None ): if timestep_keyframe is not None: # backwards compatibility tk_optional = timestep_keyframe controlnet_path = folder_paths.get_full_path("controlnet", control_net_name) controlnet = load_controlnet(controlnet_path, tk_optional, model) if is_advanced_controlnet(controlnet): controlnet.verify_all_weights() return (controlnet,) class AdvancedControlNetApply: @classmethod def INPUT_TYPES(s): return { "required": { "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "control_net": ("CONTROL_NET", ), "image": ("IMAGE", ), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) }, "optional": { "mask_optional": ("MASK", ), "timestep_kf": ("TIMESTEP_KEYFRAME", ), "latent_kf_override": ("LATENT_KEYFRAME", ), "weights_override": ("CONTROL_NET_WEIGHTS", ), "model_optional": ("MODEL",), "vae_optional": ("VAE",), "autosize": ("ACNAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("CONDITIONING","CONDITIONING","MODEL",) RETURN_NAMES = ("positive", "negative", "model_opt") FUNCTION = "apply_controlnet" CATEGORY = "Adv-ControlNet ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…" def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent, mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None, timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None, weights_override: ControlWeights=None, control_apply_to_uncond=False): if strength == 0: return (positive, negative, model_optional) if model_optional: model_optional = model_optional.clone() control_hint = image.movedim(-1,1) cnets = {} out = [] for conditioning in [positive, negative]: c = [] if conditioning is not None: for t in conditioning: d = t[1].copy() prev_cnet = d.get('control', None) if prev_cnet in cnets: c_net = cnets[prev_cnet] else: # copy, convert to advanced if needed, and set cond c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent), vae_optional) if is_advanced_controlnet(c_net): # disarm node check c_net.disarm() # if model required, verify model is passed in, and if so patch it if c_net.require_model: if not model_optional: raise Exception(f"Type '{type(c_net).__name__}' requires model_optional input, but got None.") c_net.patch_model(model=model_optional) # if vae required, verify vae is passed in if c_net.require_vae: # if controlnet can accept preprocced condhint latents and is the case, ignore vae requirement if c_net.allow_condhint_latents and isinstance(control_hint, AbstractPreprocWrapper): pass elif not vae_optional: # make sure SD3 ControlNet will get a special message instead of generic type mention if is_sd3_advanced_controlnet: raise Exception(f"SD3 ControlNet requires vae_optional input, but got None.") else: raise Exception(f"Type '{type(c_net).__name__}' requires vae_optional input, but got None.") # apply optional parameters and overrides, if provided if timestep_kf is not None: c_net.set_timestep_keyframes(timestep_kf) if latent_kf_override is not None: c_net.latent_keyframe_override = latent_kf_override if weights_override is not None: c_net.weights_override = weights_override # verify weights are compatible c_net.verify_all_weights() # set cond hint mask if mask_optional is not None: mask_optional = mask_optional.clone() # if not in the form of a batch, make it so if len(mask_optional.shape) < 3: mask_optional = mask_optional.unsqueeze(0) c_net.set_cond_hint_mask(mask_optional) c_net.set_previous_controlnet(prev_cnet) cnets[prev_cnet] = c_net d['control'] = c_net d['control_apply_to_uncond'] = control_apply_to_uncond n = [t[0], d] c.append(n) out.append(c) return (out[0], out[1], model_optional) class AdvancedControlNetApplySingle: @classmethod def INPUT_TYPES(s): return { "required": { "conditioning": ("CONDITIONING", ), "control_net": ("CONTROL_NET", ), "image": ("IMAGE", ), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) }, "optional": { "mask_optional": ("MASK", ), "timestep_kf": ("TIMESTEP_KEYFRAME", ), "latent_kf_override": ("LATENT_KEYFRAME", ), "weights_override": ("CONTROL_NET_WEIGHTS", ), "model_optional": ("MODEL",), "vae_optional": ("VAE",), "autosize": ("ACNAUTOSIZE", {"padding": 0}), } } RETURN_TYPES = ("CONDITIONING","MODEL",) RETURN_NAMES = ("CONDITIONING", "model_opt") FUNCTION = "apply_controlnet" CATEGORY = "Adv-ControlNet ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…" def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent, mask_optional: Tensor=None, model_optional: ModelPatcher=None, vae_optional=None, timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None, weights_override: ControlWeights=None): values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image, strength=strength, start_percent=start_percent, end_percent=end_percent, mask_optional=mask_optional, model_optional=model_optional, vae_optional=vae_optional, timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override, control_apply_to_uncond=True) return (values[0], values[2]) # NODE MAPPING NODE_CLASS_MAPPINGS = { # Keyframes "TimestepKeyframe": TimestepKeyframeNode, "ACN_TimestepKeyframeInterpolation": TimestepKeyframeInterpolationNode, "ACN_TimestepKeyframeFromStrengthList": TimestepKeyframeFromStrengthListNode, "LatentKeyframe": LatentKeyframeNode, "LatentKeyframeTiming": LatentKeyframeInterpolationNode, "LatentKeyframeBatchedGroup": LatentKeyframeBatchedGroupNode, "LatentKeyframeGroup": LatentKeyframeGroupNode, # Conditioning "ACN_AdvancedControlNetApply": AdvancedControlNetApply, "ACN_AdvancedControlNetApplySingle": AdvancedControlNetApplySingle, # Loaders "ControlNetLoaderAdvanced": ControlNetLoaderAdvanced, "DiffControlNetLoaderAdvanced": DiffControlNetLoaderAdvanced, # Weights "ACN_ScaledSoftControlNetWeights": ScaledSoftUniversalWeights, "ScaledSoftMaskedUniversalWeights": ScaledSoftMaskedUniversalWeights, "ACN_SoftControlNetWeightsSD15": SoftControlNetWeightsSD15, "ACN_CustomControlNetWeightsSD15": CustomControlNetWeightsSD15, "ACN_CustomControlNetWeightsFlux": CustomControlNetWeightsFlux, "ACN_SoftT2IAdapterWeights": SoftT2IAdapterWeights, "ACN_CustomT2IAdapterWeights": CustomT2IAdapterWeights, "ACN_DefaultUniversalWeights": DefaultWeights, # SparseCtrl "ACN_SparseCtrlRGBPreprocessor": RgbSparseCtrlPreprocessor, "ACN_SparseCtrlLoaderAdvanced": SparseCtrlLoaderAdvanced, "ACN_SparseCtrlMergedLoaderAdvanced": SparseCtrlMergedLoaderAdvanced, "ACN_SparseCtrlIndexMethodNode": SparseIndexMethodNode, "ACN_SparseCtrlSpreadMethodNode": SparseSpreadMethodNode, "ACN_SparseCtrlWeightExtras": SparseWeightExtras, # ControlNet++ "ACN_ControlNet++LoaderSingle": PlusPlusLoaderSingle, "ACN_ControlNet++LoaderAdvanced": PlusPlusLoaderAdvanced, "ACN_ControlNet++InputNode": PlusPlusInputNode, # Reference "ACN_ReferencePreprocessor": ReferencePreprocessorNode, "ACN_ReferenceControlNet": ReferenceControlNetNode, "ACN_ReferenceControlNetFinetune": ReferenceControlFinetune, # LOOSEControl #"ACN_ControlNetLoaderWithLoraAdvanced": ControlNetLoaderWithLoraAdvanced, # Deprecated "LoadImagesFromDirectory": LoadImagesFromDirectory, "ScaledSoftControlNetWeights": ScaledSoftUniversalWeightsDeprecated, "SoftControlNetWeights": SoftControlNetWeightsDeprecated, "CustomControlNetWeights": CustomControlNetWeightsDeprecated, "SoftT2IAdapterWeights": SoftT2IAdapterWeightsDeprecated, "CustomT2IAdapterWeights": CustomT2IAdapterWeightsDeprecated, } NODE_DISPLAY_NAME_MAPPINGS = { # Keyframes "TimestepKeyframe": "Timestep Keyframe ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_TimestepKeyframeInterpolation": "Timestep Keyframe Interp. ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_TimestepKeyframeFromStrengthList": "Timestep Keyframe From List ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "LatentKeyframe": "Latent Keyframe ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "LatentKeyframeTiming": "Latent Keyframe Interp. ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "LatentKeyframeBatchedGroup": "Latent Keyframe From List ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "LatentKeyframeGroup": "Latent Keyframe Group ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", # Conditioning "ACN_AdvancedControlNetApply": "Apply Advanced ControlNet ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_AdvancedControlNetApplySingle": "Apply Advanced ControlNet(1) ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", # Loaders "ControlNetLoaderAdvanced": "Load Advanced ControlNet Model ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "DiffControlNetLoaderAdvanced": "Load Advanced ControlNet Model (diff) ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", # Weights "ACN_ScaledSoftControlNetWeights": "Scaled Soft Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ScaledSoftMaskedUniversalWeights": "Scaled Soft Masked Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_SoftControlNetWeightsSD15": "ControlNet Soft Weights [SD1.5] ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_CustomControlNetWeightsSD15": "ControlNet Custom Weights [SD1.5] ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_CustomControlNetWeightsFlux": "ControlNet Custom Weights [Flux] ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_SoftT2IAdapterWeights": "T2IAdapter Soft Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_CustomT2IAdapterWeights": "T2IAdapter Custom Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_DefaultUniversalWeights": "Default Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", # SparseCtrl "ACN_SparseCtrlRGBPreprocessor": "RGB SparseCtrl ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_SparseCtrlLoaderAdvanced": "Load SparseCtrl Model ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_SparseCtrlMergedLoaderAdvanced": "๐ŸงชLoad Merged SparseCtrl Model ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_SparseCtrlIndexMethodNode": "SparseCtrl Index Method ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_SparseCtrlSpreadMethodNode": "SparseCtrl Spread Method ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_SparseCtrlWeightExtras": "SparseCtrl Weight Extras ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", # ControlNet++ "ACN_ControlNet++LoaderSingle": "Load ControlNet++ Model (Single) ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_ControlNet++LoaderAdvanced": "Load ControlNet++ Model (Multi) ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_ControlNet++InputNode": "ControlNet++ Input ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", # Reference "ACN_ReferencePreprocessor": "Reference Preproccessor ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_ReferenceControlNet": "Reference ControlNet ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ACN_ReferenceControlNetFinetune": "Reference ControlNet (Finetune) ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", # LOOSEControl #"ACN_ControlNetLoaderWithLoraAdvanced": "Load Adv. ControlNet Model w/ LoRA ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", # Deprecated "LoadImagesFromDirectory": "๐ŸšซLoad Images [DEPRECATED] ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "ScaledSoftControlNetWeights": "Scaled Soft Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "SoftControlNetWeights": "ControlNet Soft Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "CustomControlNetWeights": "ControlNet Custom Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "SoftT2IAdapterWeights": "T2IAdapter Soft Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", "CustomT2IAdapterWeights": "T2IAdapter Custom Weights ๐Ÿ›‚๐Ÿ…๐Ÿ…’๐Ÿ…", }