from torch import Tensor from nodes import VAEEncode import comfy.utils from comfy.sd import VAE from .control_reference import ReferenceAdvanced, ReferenceOptions, ReferenceType, ReferencePreprocWrapper # node for ReferenceCN class ReferenceControlNetNode: @classmethod def INPUT_TYPES(s): return { "required": { "reference_type": (ReferenceType._LIST,), "style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), "ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, } RETURN_TYPES = ("CONTROL_NET", ) FUNCTION = "load_controlnet" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference" def load_controlnet(self, reference_type: str, style_fidelity: float, ref_weight: float): ref_opts = ReferenceOptions.create_combo(reference_type=reference_type, style_fidelity=style_fidelity, ref_weight=ref_weight) controlnet = ReferenceAdvanced(ref_opts=ref_opts, timestep_keyframes=None) return (controlnet,) class ReferenceControlFinetune: @classmethod def INPUT_TYPES(s): return { "required": { "attn_style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), "attn_ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "attn_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "adain_style_fidelity": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}), "adain_ref_weight": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "adain_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), }, } RETURN_TYPES = ("CONTROL_NET", ) FUNCTION = "load_controlnet" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference" def load_controlnet(self, attn_style_fidelity: float, attn_ref_weight: float, attn_strength: float, adain_style_fidelity: float, adain_ref_weight: float, adain_strength: float): ref_opts = ReferenceOptions(reference_type=ReferenceType.ATTN_ADAIN, attn_style_fidelity=attn_style_fidelity, attn_ref_weight=attn_ref_weight, attn_strength=attn_strength, adain_style_fidelity=adain_style_fidelity, adain_ref_weight=adain_ref_weight, adain_strength=adain_strength) controlnet = ReferenceAdvanced(ref_opts=ref_opts, timestep_keyframes=None) return (controlnet,) class ReferencePreprocessorNode: @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE", ), "vae": ("VAE", ), "latent_size": ("LATENT", ), } } RETURN_TYPES = ("IMAGE",) RETURN_NAMES = ("proc_IMAGE",) FUNCTION = "preprocess_images" CATEGORY = "Adv-ControlNet 🛂🅐🅒🅝/Reference/preprocess" def preprocess_images(self, vae: VAE, image: Tensor, latent_size: Tensor): # first, resize image to match latents image = image.movedim(-1,1) image = comfy.utils.common_upscale(image, latent_size["samples"].shape[3] * 8, latent_size["samples"].shape[2] * 8, 'nearest-exact', "center") image = image.movedim(1,-1) # then, vae encode try: image = vae.vae_encode_crop_pixels(image) except Exception: image = VAEEncode.vae_encode_crop_pixels(image) encoded = vae.encode(image[:,:,:,:3]) return (ReferencePreprocWrapper(condhint=encoded),)