from pathlib import Path import os import re #Thanks ChatGPT pattern = r'\bfrom_pretrained\(.*?pretrained_model_or_path\s*=\s*(.*?)(?:,|\))|filename\s*=\s*(.*?)(?:,|\))|(\w+_filename)\s*=\s*(.*?)(?:,|\))' aux_dir = Path(__file__).parent / 'src' / 'custom_controlnet_aux' VAR_DICT = dict( HF_MODEL_NAME = "lllyasviel/Annotators", DWPOSE_MODEL_NAME = "yzd-v/DWPose", BDS_MODEL_NAME = "bdsqlsz/qinglong_controlnet-lllite", DENSEPOSE_MODEL_NAME = "LayerNorm/DensePose-TorchScript-with-hint-image", MESH_GRAPHORMER_MODEL_NAME = "hr16/ControlNet-HandRefiner-pruned", SAM_MODEL_NAME = "dhkim2810/MobileSAM", UNIMATCH_MODEL_NAME = "hr16/Unimatch", DEPTH_ANYTHING_MODEL_NAME = "LiheYoung/Depth-Anything", #HF Space DIFFUSION_EDGE_MODEL_NAME = "hr16/Diffusion-Edge" ) re_result_dict = {} for preprocc in os.listdir(aux_dir): if preprocc in ["__pycache__", 'tests']: continue if '.py' in preprocc: continue f = open(aux_dir / preprocc / '__init__.py', 'r') code = f.read() matches = re.findall(pattern, code) result = [match[0] or match[1] or match[3] for match in matches] if not len(result): print(preprocc) continue result = [el.replace("'", '').replace('"', '') for el in result] result = [VAR_DICT.get(el, el) for el in result] re_result_dict[preprocc] = result f.close() for preprocc, re_result in re_result_dict.items(): model_name, filenames = re_result[0], re_result[1:] print(f"* {preprocc}: ", end=' ') assests_md = ', '.join([f"[{model_name}/{filename}](https://huggingface.co/{model_name}/blob/main/{filename})" for filename in filenames]) print(assests_md) preprocc = "dwpose" model_name, filenames = VAR_DICT['DWPOSE_MODEL_NAME'], ["yolox_l.onnx", "dw-ll_ucoco_384.onnx"] print(f"* {preprocc}: ", end=' ') assests_md = ', '.join([f"[{model_name}/{filename}](https://huggingface.co/{model_name}/blob/main/{filename})" for filename in filenames]) print(assests_md) preprocc = "yolo-nas" model_name, filenames = "hr16/yolo-nas-fp16", ["yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"] print(f"* {preprocc}: ", end=' ') assests_md = ', '.join([f"[{model_name}/{filename}](https://huggingface.co/{model_name}/blob/main/{filename})" for filename in filenames]) print(assests_md) preprocc = "dwpose-torchscript" model_name, filenames = "hr16/DWPose-TorchScript-BatchSize5", ["dw-ll_ucoco_384_bs5.torchscript.pt", "rtmpose-m_ap10k_256_bs5.torchscript.pt"] print(f"* {preprocc}: ", end=' ') assests_md = ', '.join([f"[{model_name}/{filename}](https://huggingface.co/{model_name}/blob/main/{filename})" for filename in filenames]) print(assests_md)