""" Class-Attention in Image Transformers (CaiT) Paper: 'Going deeper with Image Transformers' - https://arxiv.org/abs/2103.17239 Original code and weights from https://github.com/facebookresearch/deit, copyright below Modifications and additions for timm hacked together by / Copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. from copy import deepcopy from functools import partial import torch import torch.nn as nn from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .helpers import build_model_with_cfg, checkpoint_seq from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_ from .registry import register_model __all__ = ['Cait', 'ClassAttn', 'LayerScaleBlockClassAttn', 'LayerScaleBlock', 'TalkingHeadAttn'] def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 384, 384), 'pool_size': None, 'crop_pct': 1.0, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = dict( cait_xxs24_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/XXS24_224.pth', input_size=(3, 224, 224), ), cait_xxs24_384=_cfg( url='https://dl.fbaipublicfiles.com/deit/XXS24_384.pth', ), cait_xxs36_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/XXS36_224.pth', input_size=(3, 224, 224), ), cait_xxs36_384=_cfg( url='https://dl.fbaipublicfiles.com/deit/XXS36_384.pth', ), cait_xs24_384=_cfg( url='https://dl.fbaipublicfiles.com/deit/XS24_384.pth', ), cait_s24_224=_cfg( url='https://dl.fbaipublicfiles.com/deit/S24_224.pth', input_size=(3, 224, 224), ), cait_s24_384=_cfg( url='https://dl.fbaipublicfiles.com/deit/S24_384.pth', ), cait_s36_384=_cfg( url='https://dl.fbaipublicfiles.com/deit/S36_384.pth', ), cait_m36_384=_cfg( url='https://dl.fbaipublicfiles.com/deit/M36_384.pth', ), cait_m48_448=_cfg( url='https://dl.fbaipublicfiles.com/deit/M48_448.pth', input_size=(3, 448, 448), ), ) class ClassAttn(nn.Module): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to do CA def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.q = nn.Linear(dim, dim, bias=qkv_bias) self.k = nn.Linear(dim, dim, bias=qkv_bias) self.v = nn.Linear(dim, dim, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape q = self.q(x[:, 0]).unsqueeze(1).reshape(B, 1, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) k = self.k(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) q = q * self.scale v = self.v(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3) attn = (q @ k.transpose(-2, -1)) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x_cls = (attn @ v).transpose(1, 2).reshape(B, 1, C) x_cls = self.proj(x_cls) x_cls = self.proj_drop(x_cls) return x_cls class LayerScaleBlockClassAttn(nn.Module): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to add CA and LayerScale def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=ClassAttn, mlp_block=Mlp, init_values=1e-4): super().__init__() self.norm1 = norm_layer(dim) self.attn = attn_block( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x, x_cls): u = torch.cat((x_cls, x), dim=1) x_cls = x_cls + self.drop_path(self.gamma_1 * self.attn(self.norm1(u))) x_cls = x_cls + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x_cls))) return x_cls class TalkingHeadAttn(nn.Module): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to add Talking Heads Attention (https://arxiv.org/pdf/2003.02436v1.pdf) def __init__(self, dim, num_heads=8, qkv_bias=False, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_l = nn.Linear(num_heads, num_heads) self.proj_w = nn.Linear(num_heads, num_heads) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) attn = self.proj_l(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) attn = attn.softmax(dim=-1) attn = self.proj_w(attn.permute(0, 2, 3, 1)).permute(0, 3, 1, 2) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class LayerScaleBlock(nn.Module): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to add layerScale def __init__( self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, attn_block=TalkingHeadAttn, mlp_block=Mlp, init_values=1e-4): super().__init__() self.norm1 = norm_layer(dim) self.attn = attn_block( dim, num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = mlp_block(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.gamma_1 = nn.Parameter(init_values * torch.ones(dim)) self.gamma_2 = nn.Parameter(init_values * torch.ones(dim)) def forward(self, x): x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class Cait(nn.Module): # taken from https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py # with slight modifications to adapt to our cait models def __init__( self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, global_pool='token', embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., block_layers=LayerScaleBlock, block_layers_token=LayerScaleBlockClassAttn, patch_layer=PatchEmbed, norm_layer=partial(nn.LayerNorm, eps=1e-6), act_layer=nn.GELU, attn_block=TalkingHeadAttn, mlp_block=Mlp, init_values=1e-4, attn_block_token_only=ClassAttn, mlp_block_token_only=Mlp, depth_token_only=2, mlp_ratio_token_only=4.0 ): super().__init__() assert global_pool in ('', 'token', 'avg') self.num_classes = num_classes self.global_pool = global_pool self.num_features = self.embed_dim = embed_dim self.grad_checkpointing = False self.patch_embed = patch_layer( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [drop_path_rate for i in range(depth)] self.blocks = nn.Sequential(*[ block_layers( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer, attn_block=attn_block, mlp_block=mlp_block, init_values=init_values) for i in range(depth)]) self.blocks_token_only = nn.ModuleList([ block_layers_token( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio_token_only, qkv_bias=qkv_bias, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=norm_layer, act_layer=act_layer, attn_block=attn_block_token_only, mlp_block=mlp_block_token_only, init_values=init_values) for i in range(depth_token_only)]) self.norm = norm_layer(embed_dim) self.feature_info = [dict(num_chs=embed_dim, reduction=0, module='head')] self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def group_matcher(self, coarse=False): def _matcher(name): if any([name.startswith(n) for n in ('cls_token', 'pos_embed', 'patch_embed')]): return 0 elif name.startswith('blocks.'): return int(name.split('.')[1]) + 1 elif name.startswith('blocks_token_only.'): # overlap token only blocks with last blocks to_offset = len(self.blocks) - len(self.blocks_token_only) + 1 return int(name.split('.')[1]) + to_offset elif name.startswith('norm.'): return len(self.blocks) else: return float('inf') return _matcher @torch.jit.ignore def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: assert global_pool in ('', 'token', 'avg') self.global_pool = global_pool self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) x = x + self.pos_embed x = self.pos_drop(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) for i, blk in enumerate(self.blocks_token_only): cls_tokens = blk(x, cls_tokens) x = torch.cat((cls_tokens, x), dim=1) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: x = x[:, 1:].mean(dim=1) if self.global_pool == 'avg' else x[:, 0] return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model=None): if 'model' in state_dict: state_dict = state_dict['model'] checkpoint_no_module = {} for k, v in state_dict.items(): checkpoint_no_module[k.replace('module.', '')] = v return checkpoint_no_module def _create_cait(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg( Cait, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs) return model @register_model def cait_xxs24_224(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5, **kwargs) model = _create_cait('cait_xxs24_224', pretrained=pretrained, **model_args) return model @register_model def cait_xxs24_384(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=192, depth=24, num_heads=4, init_values=1e-5, **kwargs) model = _create_cait('cait_xxs24_384', pretrained=pretrained, **model_args) return model @register_model def cait_xxs36_224(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5, **kwargs) model = _create_cait('cait_xxs36_224', pretrained=pretrained, **model_args) return model @register_model def cait_xxs36_384(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=192, depth=36, num_heads=4, init_values=1e-5, **kwargs) model = _create_cait('cait_xxs36_384', pretrained=pretrained, **model_args) return model @register_model def cait_xs24_384(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=288, depth=24, num_heads=6, init_values=1e-5, **kwargs) model = _create_cait('cait_xs24_384', pretrained=pretrained, **model_args) return model @register_model def cait_s24_224(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5, **kwargs) model = _create_cait('cait_s24_224', pretrained=pretrained, **model_args) return model @register_model def cait_s24_384(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=384, depth=24, num_heads=8, init_values=1e-5, **kwargs) model = _create_cait('cait_s24_384', pretrained=pretrained, **model_args) return model @register_model def cait_s36_384(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=384, depth=36, num_heads=8, init_values=1e-6, **kwargs) model = _create_cait('cait_s36_384', pretrained=pretrained, **model_args) return model @register_model def cait_m36_384(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=768, depth=36, num_heads=16, init_values=1e-6, **kwargs) model = _create_cait('cait_m36_384', pretrained=pretrained, **model_args) return model @register_model def cait_m48_448(pretrained=False, **kwargs): model_args = dict(patch_size=16, embed_dim=768, depth=48, num_heads=16, init_values=1e-6, **kwargs) model = _create_cait('cait_m48_448', pretrained=pretrained, **model_args) return model