"""Pytorch Densenet implementation w/ tweaks This file is a copy of https://github.com/pytorch/vision 'densenet.py' (BSD-3-Clause) with fixed kwargs passthrough and addition of dynamic global avg/max pool. """ import re from collections import OrderedDict from functools import partial import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as cp from torch.jit.annotations import List from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .helpers import build_model_with_cfg, MATCH_PREV_GROUP from .layers import BatchNormAct2d, create_norm_act_layer, BlurPool2d, create_classifier from .registry import register_model __all__ = ['DenseNet'] def _cfg(url=''): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'features.conv0', 'classifier': 'classifier', } default_cfgs = { 'densenet121': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenet121_ra-50efcf5c.pth'), 'densenet121d': _cfg(url=''), 'densenetblur121d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/densenetblur121d_ra-100dcfbc.pth'), 'densenet169': _cfg(url='https://download.pytorch.org/models/densenet169-b2777c0a.pth'), 'densenet201': _cfg(url='https://download.pytorch.org/models/densenet201-c1103571.pth'), 'densenet161': _cfg(url='https://download.pytorch.org/models/densenet161-8d451a50.pth'), 'densenet264': _cfg(url=''), 'densenet264d_iabn': _cfg(url=''), 'tv_densenet121': _cfg(url='https://download.pytorch.org/models/densenet121-a639ec97.pth'), } class DenseLayer(nn.Module): def __init__( self, num_input_features, growth_rate, bn_size, norm_layer=BatchNormAct2d, drop_rate=0., memory_efficient=False): super(DenseLayer, self).__init__() self.add_module('norm1', norm_layer(num_input_features)), self.add_module('conv1', nn.Conv2d( num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', norm_layer(bn_size * growth_rate)), self.add_module('conv2', nn.Conv2d( bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = float(drop_rate) self.memory_efficient = memory_efficient def bottleneck_fn(self, xs): # type: (List[torch.Tensor]) -> torch.Tensor concated_features = torch.cat(xs, 1) bottleneck_output = self.conv1(self.norm1(concated_features)) # noqa: T484 return bottleneck_output # todo: rewrite when torchscript supports any def any_requires_grad(self, x): # type: (List[torch.Tensor]) -> bool for tensor in x: if tensor.requires_grad: return True return False @torch.jit.unused # noqa: T484 def call_checkpoint_bottleneck(self, x): # type: (List[torch.Tensor]) -> torch.Tensor def closure(*xs): return self.bottleneck_fn(xs) return cp.checkpoint(closure, *x) @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (List[torch.Tensor]) -> (torch.Tensor) pass @torch.jit._overload_method # noqa: F811 def forward(self, x): # type: (torch.Tensor) -> (torch.Tensor) pass # torchscript does not yet support *args, so we overload method # allowing it to take either a List[Tensor] or single Tensor def forward(self, x): # noqa: F811 if isinstance(x, torch.Tensor): prev_features = [x] else: prev_features = x if self.memory_efficient and self.any_requires_grad(prev_features): if torch.jit.is_scripting(): raise Exception("Memory Efficient not supported in JIT") bottleneck_output = self.call_checkpoint_bottleneck(prev_features) else: bottleneck_output = self.bottleneck_fn(prev_features) new_features = self.conv2(self.norm2(bottleneck_output)) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return new_features class DenseBlock(nn.ModuleDict): _version = 2 def __init__( self, num_layers, num_input_features, bn_size, growth_rate, norm_layer=BatchNormAct2d, drop_rate=0., memory_efficient=False): super(DenseBlock, self).__init__() for i in range(num_layers): layer = DenseLayer( num_input_features + i * growth_rate, growth_rate=growth_rate, bn_size=bn_size, norm_layer=norm_layer, drop_rate=drop_rate, memory_efficient=memory_efficient, ) self.add_module('denselayer%d' % (i + 1), layer) def forward(self, init_features): features = [init_features] for name, layer in self.items(): new_features = layer(features) features.append(new_features) return torch.cat(features, 1) class DenseTransition(nn.Sequential): def __init__(self, num_input_features, num_output_features, norm_layer=BatchNormAct2d, aa_layer=None): super(DenseTransition, self).__init__() self.add_module('norm', norm_layer(num_input_features)) self.add_module('conv', nn.Conv2d( num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) if aa_layer is not None: self.add_module('pool', aa_layer(num_output_features, stride=2)) else: self.add_module('pool', nn.AvgPool2d(kernel_size=2, stride=2)) class DenseNet(nn.Module): r"""Densenet-BC model class, based on `"Densely Connected Convolutional Networks" `_ Args: growth_rate (int) - how many filters to add each layer (`k` in paper) block_config (list of 4 ints) - how many layers in each pooling block bn_size (int) - multiplicative factor for number of bottle neck layers (i.e. bn_size * k features in the bottleneck layer) drop_rate (float) - dropout rate after each dense layer num_classes (int) - number of classification classes memory_efficient (bool) - If True, uses checkpointing. Much more memory efficient, but slower. Default: *False*. See `"paper" `_ """ def __init__( self, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=1000, in_chans=3, global_pool='avg', bn_size=4, stem_type='', norm_layer=BatchNormAct2d, aa_layer=None, drop_rate=0, memory_efficient=False, aa_stem_only=True): self.num_classes = num_classes self.drop_rate = drop_rate super(DenseNet, self).__init__() # Stem deep_stem = 'deep' in stem_type # 3x3 deep stem num_init_features = growth_rate * 2 if aa_layer is None: stem_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) else: stem_pool = nn.Sequential(*[ nn.MaxPool2d(kernel_size=3, stride=1, padding=1), aa_layer(channels=num_init_features, stride=2)]) if deep_stem: stem_chs_1 = stem_chs_2 = growth_rate if 'tiered' in stem_type: stem_chs_1 = 3 * (growth_rate // 4) stem_chs_2 = num_init_features if 'narrow' in stem_type else 6 * (growth_rate // 4) self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(in_chans, stem_chs_1, 3, stride=2, padding=1, bias=False)), ('norm0', norm_layer(stem_chs_1)), ('conv1', nn.Conv2d(stem_chs_1, stem_chs_2, 3, stride=1, padding=1, bias=False)), ('norm1', norm_layer(stem_chs_2)), ('conv2', nn.Conv2d(stem_chs_2, num_init_features, 3, stride=1, padding=1, bias=False)), ('norm2', norm_layer(num_init_features)), ('pool0', stem_pool), ])) else: self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(in_chans, num_init_features, kernel_size=7, stride=2, padding=3, bias=False)), ('norm0', norm_layer(num_init_features)), ('pool0', stem_pool), ])) self.feature_info = [ dict(num_chs=num_init_features, reduction=2, module=f'features.norm{2 if deep_stem else 0}')] current_stride = 4 # DenseBlocks num_features = num_init_features for i, num_layers in enumerate(block_config): block = DenseBlock( num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, norm_layer=norm_layer, drop_rate=drop_rate, memory_efficient=memory_efficient ) module_name = f'denseblock{(i + 1)}' self.features.add_module(module_name, block) num_features = num_features + num_layers * growth_rate transition_aa_layer = None if aa_stem_only else aa_layer if i != len(block_config) - 1: self.feature_info += [ dict(num_chs=num_features, reduction=current_stride, module='features.' + module_name)] current_stride *= 2 trans = DenseTransition( num_input_features=num_features, num_output_features=num_features // 2, norm_layer=norm_layer, aa_layer=transition_aa_layer) self.features.add_module(f'transition{i + 1}', trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', norm_layer(num_features)) self.feature_info += [dict(num_chs=num_features, reduction=current_stride, module='features.norm5')] self.num_features = num_features # Linear layer self.global_pool, self.classifier = create_classifier( self.num_features, self.num_classes, pool_type=global_pool) # Official init from torch repo. for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^features\.conv[012]|features\.norm[012]|features\.pool[012]', blocks=r'^features\.(?:denseblock|transition)(\d+)' if coarse else [ (r'^features\.denseblock(\d+)\.denselayer(\d+)', None), (r'^features\.transition(\d+)', MATCH_PREV_GROUP) # FIXME combine with previous denselayer ] ) return matcher @torch.jit.ignore def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes self.global_pool, self.classifier = create_classifier( self.num_features, self.num_classes, pool_type=global_pool) def forward_features(self, x): return self.features(x) def forward(self, x): x = self.forward_features(x) x = self.global_pool(x) # both classifier and block drop? # if self.drop_rate > 0.: # x = F.dropout(x, p=self.drop_rate, training=self.training) x = self.classifier(x) return x def _filter_torchvision_pretrained(state_dict): pattern = re.compile( r'^(.*denselayer\d+\.(?:norm|relu|conv))\.((?:[12])\.(?:weight|bias|running_mean|running_var))$') for key in list(state_dict.keys()): res = pattern.match(key) if res: new_key = res.group(1) + res.group(2) state_dict[new_key] = state_dict[key] del state_dict[key] return state_dict def _create_densenet(variant, growth_rate, block_config, pretrained, **kwargs): kwargs['growth_rate'] = growth_rate kwargs['block_config'] = block_config return build_model_with_cfg( DenseNet, variant, pretrained, feature_cfg=dict(flatten_sequential=True), pretrained_filter_fn=_filter_torchvision_pretrained, **kwargs) @register_model def densenet121(pretrained=False, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" ` """ model = _create_densenet( 'densenet121', growth_rate=32, block_config=(6, 12, 24, 16), pretrained=pretrained, **kwargs) return model @register_model def densenetblur121d(pretrained=False, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" ` """ model = _create_densenet( 'densenetblur121d', growth_rate=32, block_config=(6, 12, 24, 16), pretrained=pretrained, stem_type='deep', aa_layer=BlurPool2d, **kwargs) return model @register_model def densenet121d(pretrained=False, **kwargs): r"""Densenet-121 model from `"Densely Connected Convolutional Networks" ` """ model = _create_densenet( 'densenet121d', growth_rate=32, block_config=(6, 12, 24, 16), stem_type='deep', pretrained=pretrained, **kwargs) return model @register_model def densenet169(pretrained=False, **kwargs): r"""Densenet-169 model from `"Densely Connected Convolutional Networks" ` """ model = _create_densenet( 'densenet169', growth_rate=32, block_config=(6, 12, 32, 32), pretrained=pretrained, **kwargs) return model @register_model def densenet201(pretrained=False, **kwargs): r"""Densenet-201 model from `"Densely Connected Convolutional Networks" ` """ model = _create_densenet( 'densenet201', growth_rate=32, block_config=(6, 12, 48, 32), pretrained=pretrained, **kwargs) return model @register_model def densenet161(pretrained=False, **kwargs): r"""Densenet-161 model from `"Densely Connected Convolutional Networks" ` """ model = _create_densenet( 'densenet161', growth_rate=48, block_config=(6, 12, 36, 24), pretrained=pretrained, **kwargs) return model @register_model def densenet264(pretrained=False, **kwargs): r"""Densenet-264 model from `"Densely Connected Convolutional Networks" ` """ model = _create_densenet( 'densenet264', growth_rate=48, block_config=(6, 12, 64, 48), pretrained=pretrained, **kwargs) return model @register_model def densenet264d_iabn(pretrained=False, **kwargs): r"""Densenet-264 model with deep stem and Inplace-ABN """ def norm_act_fn(num_features, **kwargs): return create_norm_act_layer('iabn', num_features, act_layer='leaky_relu', **kwargs) model = _create_densenet( 'densenet264d_iabn', growth_rate=48, block_config=(6, 12, 64, 48), stem_type='deep', norm_layer=norm_act_fn, pretrained=pretrained, **kwargs) return model @register_model def tv_densenet121(pretrained=False, **kwargs): r"""Densenet-121 model with original Torchvision weights, from `"Densely Connected Convolutional Networks" ` """ model = _create_densenet( 'tv_densenet121', growth_rate=32, block_config=(6, 12, 24, 16), pretrained=pretrained, **kwargs) return model