from __future__ import division from typing import Optional, Sequence, Union from warnings import warn import cv2 import numpy as np import skimage from custom_albumentations import random_utils from custom_albumentations.augmentations.utils import ( MAX_VALUES_BY_DTYPE, _maybe_process_in_chunks, clip, clipped, ensure_contiguous, is_grayscale_image, is_rgb_image, non_rgb_warning, preserve_channel_dim, preserve_shape, ) __all__ = [ "add_fog", "add_rain", "add_shadow", "add_gravel", "add_snow", "add_sun_flare", "add_weighted", "adjust_brightness_torchvision", "adjust_contrast_torchvision", "adjust_hue_torchvision", "adjust_saturation_torchvision", "brightness_contrast_adjust", "channel_shuffle", "clahe", "convolve", "downscale", "equalize", "fancy_pca", "from_float", "gamma_transform", "gauss_noise", "image_compression", "invert", "iso_noise", "linear_transformation_rgb", "move_tone_curve", "multiply", "noop", "normalize", "posterize", "shift_hsv", "shift_rgb", "solarize", "superpixels", "swap_tiles_on_image", "to_float", "to_gray", "gray_to_rgb", "unsharp_mask", ] def normalize_cv2(img, mean, denominator): if mean.shape and len(mean) != 4 and mean.shape != img.shape: mean = np.array(mean.tolist() + [0] * (4 - len(mean)), dtype=np.float64) if not denominator.shape: denominator = np.array([denominator.tolist()] * 4, dtype=np.float64) elif len(denominator) != 4 and denominator.shape != img.shape: denominator = np.array(denominator.tolist() + [1] * (4 - len(denominator)), dtype=np.float64) img = np.ascontiguousarray(img.astype("float32")) cv2.subtract(img, mean.astype(np.float64), img) cv2.multiply(img, denominator.astype(np.float64), img) return img def normalize_numpy(img, mean, denominator): img = img.astype(np.float32) img -= mean img *= denominator return img def normalize(img, mean, std, max_pixel_value=255.0): mean = np.array(mean, dtype=np.float32) mean *= max_pixel_value std = np.array(std, dtype=np.float32) std *= max_pixel_value denominator = np.reciprocal(std, dtype=np.float32) if img.ndim == 3 and img.shape[-1] == 3: return normalize_cv2(img, mean, denominator) return normalize_numpy(img, mean, denominator) def _shift_hsv_uint8(img, hue_shift, sat_shift, val_shift): dtype = img.dtype img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) hue, sat, val = cv2.split(img) if hue_shift != 0: lut_hue = np.arange(0, 256, dtype=np.int16) lut_hue = np.mod(lut_hue + hue_shift, 180).astype(dtype) hue = cv2.LUT(hue, lut_hue) if sat_shift != 0: lut_sat = np.arange(0, 256, dtype=np.int16) lut_sat = np.clip(lut_sat + sat_shift, 0, 255).astype(dtype) sat = cv2.LUT(sat, lut_sat) if val_shift != 0: lut_val = np.arange(0, 256, dtype=np.int16) lut_val = np.clip(lut_val + val_shift, 0, 255).astype(dtype) val = cv2.LUT(val, lut_val) img = cv2.merge((hue, sat, val)).astype(dtype) img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB) return img def _shift_hsv_non_uint8(img, hue_shift, sat_shift, val_shift): dtype = img.dtype img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) hue, sat, val = cv2.split(img) if hue_shift != 0: hue = cv2.add(hue, hue_shift) hue = np.mod(hue, 360) # OpenCV fails with negative values if sat_shift != 0: sat = clip(cv2.add(sat, sat_shift), dtype, 1.0) if val_shift != 0: val = clip(cv2.add(val, val_shift), dtype, 1.0) img = cv2.merge((hue, sat, val)) img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB) return img @preserve_shape def shift_hsv(img, hue_shift, sat_shift, val_shift): if hue_shift == 0 and sat_shift == 0 and val_shift == 0: return img is_gray = is_grayscale_image(img) if is_gray: if hue_shift != 0 or sat_shift != 0: hue_shift = 0 sat_shift = 0 warn( "HueSaturationValue: hue_shift and sat_shift are not applicable to grayscale image. " "Set them to 0 or use RGB image" ) img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) if img.dtype == np.uint8: img = _shift_hsv_uint8(img, hue_shift, sat_shift, val_shift) else: img = _shift_hsv_non_uint8(img, hue_shift, sat_shift, val_shift) if is_gray: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) return img def solarize(img, threshold=128): """Invert all pixel values above a threshold. Args: img (numpy.ndarray): The image to solarize. threshold (int): All pixels above this greyscale level are inverted. Returns: numpy.ndarray: Solarized image. """ dtype = img.dtype max_val = MAX_VALUES_BY_DTYPE[dtype] if dtype == np.dtype("uint8"): lut = [(i if i < threshold else max_val - i) for i in range(max_val + 1)] prev_shape = img.shape img = cv2.LUT(img, np.array(lut, dtype=dtype)) if len(prev_shape) != len(img.shape): img = np.expand_dims(img, -1) return img result_img = img.copy() cond = img >= threshold result_img[cond] = max_val - result_img[cond] return result_img @preserve_shape def posterize(img, bits): """Reduce the number of bits for each color channel. Args: img (numpy.ndarray): image to posterize. bits (int): number of high bits. Must be in range [0, 8] Returns: numpy.ndarray: Image with reduced color channels. """ bits = np.uint8(bits) if img.dtype != np.uint8: raise TypeError("Image must have uint8 channel type") if np.any((bits < 0) | (bits > 8)): raise ValueError("bits must be in range [0, 8]") if not bits.shape or len(bits) == 1: if bits == 0: return np.zeros_like(img) if bits == 8: return img.copy() lut = np.arange(0, 256, dtype=np.uint8) mask = ~np.uint8(2 ** (8 - bits) - 1) lut &= mask return cv2.LUT(img, lut) if not is_rgb_image(img): raise TypeError("If bits is iterable image must be RGB") result_img = np.empty_like(img) for i, channel_bits in enumerate(bits): if channel_bits == 0: result_img[..., i] = np.zeros_like(img[..., i]) elif channel_bits == 8: result_img[..., i] = img[..., i].copy() else: lut = np.arange(0, 256, dtype=np.uint8) mask = ~np.uint8(2 ** (8 - channel_bits) - 1) lut &= mask result_img[..., i] = cv2.LUT(img[..., i], lut) return result_img def _equalize_pil(img, mask=None): histogram = cv2.calcHist([img], [0], mask, [256], (0, 256)).ravel() h = [_f for _f in histogram if _f] if len(h) <= 1: return img.copy() step = np.sum(h[:-1]) // 255 if not step: return img.copy() lut = np.empty(256, dtype=np.uint8) n = step // 2 for i in range(256): lut[i] = min(n // step, 255) n += histogram[i] return cv2.LUT(img, np.array(lut)) def _equalize_cv(img, mask=None): if mask is None: return cv2.equalizeHist(img) histogram = cv2.calcHist([img], [0], mask, [256], (0, 256)).ravel() i = 0 for val in histogram: if val > 0: break i += 1 i = min(i, 255) total = np.sum(histogram) if histogram[i] == total: return np.full_like(img, i) scale = 255.0 / (total - histogram[i]) _sum = 0 lut = np.zeros(256, dtype=np.uint8) i += 1 for i in range(i, len(histogram)): _sum += histogram[i] lut[i] = clip(round(_sum * scale), np.dtype("uint8"), 255) return cv2.LUT(img, lut) @preserve_channel_dim def equalize(img, mask=None, mode="cv", by_channels=True): """Equalize the image histogram. Args: img (numpy.ndarray): RGB or grayscale image. mask (numpy.ndarray): An optional mask. If given, only the pixels selected by the mask are included in the analysis. Maybe 1 channel or 3 channel array. mode (str): {'cv', 'pil'}. Use OpenCV or Pillow equalization method. by_channels (bool): If True, use equalization by channels separately, else convert image to YCbCr representation and use equalization by `Y` channel. Returns: numpy.ndarray: Equalized image. """ if img.dtype != np.uint8: raise TypeError("Image must have uint8 channel type") modes = ["cv", "pil"] if mode not in modes: raise ValueError("Unsupported equalization mode. Supports: {}. " "Got: {}".format(modes, mode)) if mask is not None: if is_rgb_image(mask) and is_grayscale_image(img): raise ValueError("Wrong mask shape. Image shape: {}. " "Mask shape: {}".format(img.shape, mask.shape)) if not by_channels and not is_grayscale_image(mask): raise ValueError( "When by_channels=False only 1-channel mask supports. " "Mask shape: {}".format(mask.shape) ) if mode == "pil": function = _equalize_pil else: function = _equalize_cv if mask is not None: mask = mask.astype(np.uint8) if is_grayscale_image(img): return function(img, mask) if not by_channels: result_img = cv2.cvtColor(img, cv2.COLOR_RGB2YCrCb) result_img[..., 0] = function(result_img[..., 0], mask) return cv2.cvtColor(result_img, cv2.COLOR_YCrCb2RGB) result_img = np.empty_like(img) for i in range(3): if mask is None: _mask = None elif is_grayscale_image(mask): _mask = mask else: _mask = mask[..., i] result_img[..., i] = function(img[..., i], _mask) return result_img @preserve_shape def move_tone_curve(img, low_y, high_y): """Rescales the relationship between bright and dark areas of the image by manipulating its tone curve. Args: img (numpy.ndarray): RGB or grayscale image. low_y (float): y-position of a Bezier control point used to adjust the tone curve, must be in range [0, 1] high_y (float): y-position of a Bezier control point used to adjust image tone curve, must be in range [0, 1] """ input_dtype = img.dtype if low_y < 0 or low_y > 1: raise ValueError("low_shift must be in range [0, 1]") if high_y < 0 or high_y > 1: raise ValueError("high_shift must be in range [0, 1]") if input_dtype != np.uint8: raise ValueError("Unsupported image type {}".format(input_dtype)) t = np.linspace(0.0, 1.0, 256) # Defines responze of a four-point bezier curve def evaluate_bez(t): return 3 * (1 - t) ** 2 * t * low_y + 3 * (1 - t) * t**2 * high_y + t**3 evaluate_bez = np.vectorize(evaluate_bez) remapping = np.rint(evaluate_bez(t) * 255).astype(np.uint8) lut_fn = _maybe_process_in_chunks(cv2.LUT, lut=remapping) img = lut_fn(img) return img @clipped def _shift_rgb_non_uint8(img, r_shift, g_shift, b_shift): if r_shift == g_shift == b_shift: return img + r_shift result_img = np.empty_like(img) shifts = [r_shift, g_shift, b_shift] for i, shift in enumerate(shifts): result_img[..., i] = img[..., i] + shift return result_img def _shift_image_uint8(img, value): max_value = MAX_VALUES_BY_DTYPE[img.dtype] lut = np.arange(0, max_value + 1).astype("float32") lut += value lut = np.clip(lut, 0, max_value).astype(img.dtype) return cv2.LUT(img, lut) @preserve_shape def _shift_rgb_uint8(img, r_shift, g_shift, b_shift): if r_shift == g_shift == b_shift: h, w, c = img.shape img = img.reshape([h, w * c]) return _shift_image_uint8(img, r_shift) result_img = np.empty_like(img) shifts = [r_shift, g_shift, b_shift] for i, shift in enumerate(shifts): result_img[..., i] = _shift_image_uint8(img[..., i], shift) return result_img def shift_rgb(img, r_shift, g_shift, b_shift): if img.dtype == np.uint8: return _shift_rgb_uint8(img, r_shift, g_shift, b_shift) return _shift_rgb_non_uint8(img, r_shift, g_shift, b_shift) @clipped def linear_transformation_rgb(img, transformation_matrix): result_img = cv2.transform(img, transformation_matrix) return result_img @preserve_channel_dim def clahe(img, clip_limit=2.0, tile_grid_size=(8, 8)): if img.dtype != np.uint8: raise TypeError("clahe supports only uint8 inputs") clahe_mat = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size) if len(img.shape) == 2 or img.shape[2] == 1: img = clahe_mat.apply(img) else: img = cv2.cvtColor(img, cv2.COLOR_RGB2LAB) img[:, :, 0] = clahe_mat.apply(img[:, :, 0]) img = cv2.cvtColor(img, cv2.COLOR_LAB2RGB) return img @preserve_shape def convolve(img, kernel): conv_fn = _maybe_process_in_chunks(cv2.filter2D, ddepth=-1, kernel=kernel) return conv_fn(img) @preserve_shape def image_compression(img, quality, image_type): if image_type in [".jpeg", ".jpg"]: quality_flag = cv2.IMWRITE_JPEG_QUALITY elif image_type == ".webp": quality_flag = cv2.IMWRITE_WEBP_QUALITY else: NotImplementedError("Only '.jpg' and '.webp' compression transforms are implemented. ") input_dtype = img.dtype needs_float = False if input_dtype == np.float32: warn( "Image compression augmentation " "is most effective with uint8 inputs, " "{} is used as input.".format(input_dtype), UserWarning, ) img = from_float(img, dtype=np.dtype("uint8")) needs_float = True elif input_dtype not in (np.uint8, np.float32): raise ValueError("Unexpected dtype {} for image augmentation".format(input_dtype)) _, encoded_img = cv2.imencode(image_type, img, (int(quality_flag), quality)) img = cv2.imdecode(encoded_img, cv2.IMREAD_UNCHANGED) if needs_float: img = to_float(img, max_value=255) return img @preserve_shape def add_snow(img, snow_point, brightness_coeff): """Bleaches out pixels, imitation snow. From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: img (numpy.ndarray): Image. snow_point: Number of show points. brightness_coeff: Brightness coefficient. Returns: numpy.ndarray: Image. """ non_rgb_warning(img) input_dtype = img.dtype needs_float = False snow_point *= 127.5 # = 255 / 2 snow_point += 85 # = 255 / 3 if input_dtype == np.float32: img = from_float(img, dtype=np.dtype("uint8")) needs_float = True elif input_dtype not in (np.uint8, np.float32): raise ValueError("Unexpected dtype {} for RandomSnow augmentation".format(input_dtype)) image_HLS = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) image_HLS = np.array(image_HLS, dtype=np.float32) image_HLS[:, :, 1][image_HLS[:, :, 1] < snow_point] *= brightness_coeff image_HLS[:, :, 1] = clip(image_HLS[:, :, 1], np.uint8, 255) image_HLS = np.array(image_HLS, dtype=np.uint8) image_RGB = cv2.cvtColor(image_HLS, cv2.COLOR_HLS2RGB) if needs_float: image_RGB = to_float(image_RGB, max_value=255) return image_RGB @preserve_shape def add_rain( img, slant, drop_length, drop_width, drop_color, blur_value, brightness_coefficient, rain_drops, ): """ From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: img (numpy.ndarray): Image. slant (int): drop_length: drop_width: drop_color: blur_value (int): Rainy view are blurry. brightness_coefficient (float): Rainy days are usually shady. rain_drops: Returns: numpy.ndarray: Image. """ non_rgb_warning(img) input_dtype = img.dtype needs_float = False if input_dtype == np.float32: img = from_float(img, dtype=np.dtype("uint8")) needs_float = True elif input_dtype not in (np.uint8, np.float32): raise ValueError("Unexpected dtype {} for RandomRain augmentation".format(input_dtype)) image = img.copy() for rain_drop_x0, rain_drop_y0 in rain_drops: rain_drop_x1 = rain_drop_x0 + slant rain_drop_y1 = rain_drop_y0 + drop_length cv2.line( image, (rain_drop_x0, rain_drop_y0), (rain_drop_x1, rain_drop_y1), drop_color, drop_width, ) image = cv2.blur(image, (blur_value, blur_value)) # rainy view are blurry image_hsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV).astype(np.float32) image_hsv[:, :, 2] *= brightness_coefficient image_rgb = cv2.cvtColor(image_hsv.astype(np.uint8), cv2.COLOR_HSV2RGB) if needs_float: image_rgb = to_float(image_rgb, max_value=255) return image_rgb @preserve_shape def add_fog(img, fog_coef, alpha_coef, haze_list): """Add fog to the image. From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: img (numpy.ndarray): Image. fog_coef (float): Fog coefficient. alpha_coef (float): Alpha coefficient. haze_list (list): Returns: numpy.ndarray: Image. """ non_rgb_warning(img) input_dtype = img.dtype needs_float = False if input_dtype == np.float32: img = from_float(img, dtype=np.dtype("uint8")) needs_float = True elif input_dtype not in (np.uint8, np.float32): raise ValueError("Unexpected dtype {} for RandomFog augmentation".format(input_dtype)) width = img.shape[1] hw = max(int(width // 3 * fog_coef), 10) for haze_points in haze_list: x, y = haze_points overlay = img.copy() output = img.copy() alpha = alpha_coef * fog_coef rad = hw // 2 point = (x + hw // 2, y + hw // 2) cv2.circle(overlay, point, int(rad), (255, 255, 255), -1) cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output) img = output.copy() image_rgb = cv2.blur(img, (hw // 10, hw // 10)) if needs_float: image_rgb = to_float(image_rgb, max_value=255) return image_rgb @preserve_shape def add_sun_flare(img, flare_center_x, flare_center_y, src_radius, src_color, circles): """Add sun flare. From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: img (numpy.ndarray): flare_center_x (float): flare_center_y (float): src_radius: src_color (int, int, int): circles (list): Returns: numpy.ndarray: """ non_rgb_warning(img) input_dtype = img.dtype needs_float = False if input_dtype == np.float32: img = from_float(img, dtype=np.dtype("uint8")) needs_float = True elif input_dtype not in (np.uint8, np.float32): raise ValueError("Unexpected dtype {} for RandomSunFlareaugmentation".format(input_dtype)) overlay = img.copy() output = img.copy() for alpha, (x, y), rad3, (r_color, g_color, b_color) in circles: cv2.circle(overlay, (x, y), rad3, (r_color, g_color, b_color), -1) cv2.addWeighted(overlay, alpha, output, 1 - alpha, 0, output) point = (int(flare_center_x), int(flare_center_y)) overlay = output.copy() num_times = src_radius // 10 alpha = np.linspace(0.0, 1, num=num_times) rad = np.linspace(1, src_radius, num=num_times) for i in range(num_times): cv2.circle(overlay, point, int(rad[i]), src_color, -1) alp = alpha[num_times - i - 1] * alpha[num_times - i - 1] * alpha[num_times - i - 1] cv2.addWeighted(overlay, alp, output, 1 - alp, 0, output) image_rgb = output if needs_float: image_rgb = to_float(image_rgb, max_value=255) return image_rgb @ensure_contiguous @preserve_shape def add_shadow(img, vertices_list): """Add shadows to the image. From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: img (numpy.ndarray): vertices_list (list): Returns: numpy.ndarray: """ non_rgb_warning(img) input_dtype = img.dtype needs_float = False if input_dtype == np.float32: img = from_float(img, dtype=np.dtype("uint8")) needs_float = True elif input_dtype not in (np.uint8, np.float32): raise ValueError("Unexpected dtype {} for RandomShadow augmentation".format(input_dtype)) image_hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) mask = np.zeros_like(img) # adding all shadow polygons on empty mask, single 255 denotes only red channel for vertices in vertices_list: cv2.fillPoly(mask, vertices, 255) # if red channel is hot, image's "Lightness" channel's brightness is lowered red_max_value_ind = mask[:, :, 0] == 255 image_hls[:, :, 1][red_max_value_ind] = image_hls[:, :, 1][red_max_value_ind] * 0.5 image_rgb = cv2.cvtColor(image_hls, cv2.COLOR_HLS2RGB) if needs_float: image_rgb = to_float(image_rgb, max_value=255) return image_rgb @ensure_contiguous @preserve_shape def add_gravel(img: np.ndarray, gravels: list): """Add gravel to the image. From https://github.com/UjjwalSaxena/Automold--Road-Augmentation-Library Args: img (numpy.ndarray): image to add gravel to gravels (list): list of gravel parameters. (float, float, float, float): (top-left x, top-left y, bottom-right x, bottom right y) Returns: numpy.ndarray: """ non_rgb_warning(img) input_dtype = img.dtype needs_float = False if input_dtype == np.float32: img = from_float(img, dtype=np.dtype("uint8")) needs_float = True elif input_dtype not in (np.uint8, np.float32): raise ValueError("Unexpected dtype {} for AddGravel augmentation".format(input_dtype)) image_hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS) for gravel in gravels: y1, y2, x1, x2, sat = gravel image_hls[x1:x2, y1:y2, 1] = sat image_rgb = cv2.cvtColor(image_hls, cv2.COLOR_HLS2RGB) if needs_float: image_rgb = to_float(image_rgb, max_value=255) return image_rgb def invert(img: np.ndarray) -> np.ndarray: # Supports all the valid dtypes # clips the img to avoid unexpected behaviour. return MAX_VALUES_BY_DTYPE[img.dtype] - img def channel_shuffle(img, channels_shuffled): img = img[..., channels_shuffled] return img @preserve_shape def gamma_transform(img, gamma): if img.dtype == np.uint8: table = (np.arange(0, 256.0 / 255, 1.0 / 255) ** gamma) * 255 img = cv2.LUT(img, table.astype(np.uint8)) else: img = np.power(img, gamma) return img @clipped def gauss_noise(image, gauss): image = image.astype("float32") return image + gauss @clipped def _brightness_contrast_adjust_non_uint(img, alpha=1, beta=0, beta_by_max=False): dtype = img.dtype img = img.astype("float32") if alpha != 1: img *= alpha if beta != 0: if beta_by_max: max_value = MAX_VALUES_BY_DTYPE[dtype] img += beta * max_value else: img += beta * np.mean(img) return img @preserve_shape def _brightness_contrast_adjust_uint(img, alpha=1, beta=0, beta_by_max=False): dtype = np.dtype("uint8") max_value = MAX_VALUES_BY_DTYPE[dtype] lut = np.arange(0, max_value + 1).astype("float32") if alpha != 1: lut *= alpha if beta != 0: if beta_by_max: lut += beta * max_value else: lut += (alpha * beta) * np.mean(img) lut = np.clip(lut, 0, max_value).astype(dtype) img = cv2.LUT(img, lut) return img def brightness_contrast_adjust(img, alpha=1, beta=0, beta_by_max=False): if img.dtype == np.uint8: return _brightness_contrast_adjust_uint(img, alpha, beta, beta_by_max) return _brightness_contrast_adjust_non_uint(img, alpha, beta, beta_by_max) @clipped def iso_noise(image, color_shift=0.05, intensity=0.5, random_state=None, **kwargs): """ Apply poisson noise to image to simulate camera sensor noise. Args: image (numpy.ndarray): Input image, currently, only RGB, uint8 images are supported. color_shift (float): intensity (float): Multiplication factor for noise values. Values of ~0.5 are produce noticeable, yet acceptable level of noise. random_state: **kwargs: Returns: numpy.ndarray: Noised image """ if image.dtype != np.uint8: raise TypeError("Image must have uint8 channel type") if not is_rgb_image(image): raise TypeError("Image must be RGB") one_over_255 = float(1.0 / 255.0) image = np.multiply(image, one_over_255, dtype=np.float32) hls = cv2.cvtColor(image, cv2.COLOR_RGB2HLS) _, stddev = cv2.meanStdDev(hls) luminance_noise = random_utils.poisson(stddev[1] * intensity * 255, size=hls.shape[:2], random_state=random_state) color_noise = random_utils.normal(0, color_shift * 360 * intensity, size=hls.shape[:2], random_state=random_state) hue = hls[..., 0] hue += color_noise hue[hue < 0] += 360 hue[hue > 360] -= 360 luminance = hls[..., 1] luminance += (luminance_noise / 255) * (1.0 - luminance) image = cv2.cvtColor(hls, cv2.COLOR_HLS2RGB) * 255 return image.astype(np.uint8) def to_gray(img): gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) return cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB) def gray_to_rgb(img): return cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) @preserve_shape def downscale(img, scale, down_interpolation=cv2.INTER_AREA, up_interpolation=cv2.INTER_LINEAR): h, w = img.shape[:2] need_cast = ( up_interpolation != cv2.INTER_NEAREST or down_interpolation != cv2.INTER_NEAREST ) and img.dtype == np.uint8 if need_cast: img = to_float(img) downscaled = cv2.resize(img, None, fx=scale, fy=scale, interpolation=down_interpolation) upscaled = cv2.resize(downscaled, (w, h), interpolation=up_interpolation) if need_cast: upscaled = from_float(np.clip(upscaled, 0, 1), dtype=np.dtype("uint8")) return upscaled def to_float(img, max_value=None): if max_value is None: try: max_value = MAX_VALUES_BY_DTYPE[img.dtype] except KeyError: raise RuntimeError( "Can't infer the maximum value for dtype {}. You need to specify the maximum value manually by " "passing the max_value argument".format(img.dtype) ) return img.astype("float32") / max_value def from_float(img, dtype, max_value=None): if max_value is None: try: max_value = MAX_VALUES_BY_DTYPE[dtype] except KeyError: raise RuntimeError( "Can't infer the maximum value for dtype {}. You need to specify the maximum value manually by " "passing the max_value argument".format(dtype) ) return (img * max_value).astype(dtype) def noop(input_obj, **params): # skipcq: PYL-W0613 return input_obj def swap_tiles_on_image(image, tiles): """ Swap tiles on image. Args: image (np.ndarray): Input image. tiles (np.ndarray): array of tuples( current_left_up_corner_row, current_left_up_corner_col, old_left_up_corner_row, old_left_up_corner_col, height_tile, width_tile) Returns: np.ndarray: Output image. """ new_image = image.copy() for tile in tiles: new_image[tile[0] : tile[0] + tile[4], tile[1] : tile[1] + tile[5]] = image[ tile[2] : tile[2] + tile[4], tile[3] : tile[3] + tile[5] ] return new_image @clipped def _multiply_uint8(img, multiplier): img = img.astype(np.float32) return np.multiply(img, multiplier) @preserve_shape def _multiply_uint8_optimized(img, multiplier): if is_grayscale_image(img) or len(multiplier) == 1: multiplier = multiplier[0] lut = np.arange(0, 256, dtype=np.float32) lut *= multiplier lut = clip(lut, np.uint8, MAX_VALUES_BY_DTYPE[img.dtype]) func = _maybe_process_in_chunks(cv2.LUT, lut=lut) return func(img) channels = img.shape[-1] lut = [np.arange(0, 256, dtype=np.float32)] * channels lut = np.stack(lut, axis=-1) lut *= multiplier lut = clip(lut, np.uint8, MAX_VALUES_BY_DTYPE[img.dtype]) images = [] for i in range(channels): func = _maybe_process_in_chunks(cv2.LUT, lut=lut[:, i]) images.append(func(img[:, :, i])) return np.stack(images, axis=-1) @clipped def _multiply_non_uint8(img, multiplier): return img * multiplier def multiply(img, multiplier): """ Args: img (numpy.ndarray): Image. multiplier (numpy.ndarray): Multiplier coefficient. Returns: numpy.ndarray: Image multiplied by `multiplier` coefficient. """ if img.dtype == np.uint8: if len(multiplier.shape) == 1: return _multiply_uint8_optimized(img, multiplier) return _multiply_uint8(img, multiplier) return _multiply_non_uint8(img, multiplier) def bbox_from_mask(mask): """Create bounding box from binary mask (fast version) Args: mask (numpy.ndarray): binary mask. Returns: tuple: A bounding box tuple `(x_min, y_min, x_max, y_max)`. """ rows = np.any(mask, axis=1) if not rows.any(): return -1, -1, -1, -1 cols = np.any(mask, axis=0) y_min, y_max = np.where(rows)[0][[0, -1]] x_min, x_max = np.where(cols)[0][[0, -1]] return x_min, y_min, x_max + 1, y_max + 1 def mask_from_bbox(img, bbox): """Create binary mask from bounding box Args: img (numpy.ndarray): input image bbox: A bounding box tuple `(x_min, y_min, x_max, y_max)` Returns: mask (numpy.ndarray): binary mask """ mask = np.zeros(img.shape[:2], dtype=np.uint8) x_min, y_min, x_max, y_max = bbox mask[y_min:y_max, x_min:x_max] = 1 return mask def fancy_pca(img, alpha=0.1): """Perform 'Fancy PCA' augmentation from: http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf Args: img (numpy.ndarray): numpy array with (h, w, rgb) shape, as ints between 0-255 alpha (float): how much to perturb/scale the eigen vecs and vals the paper used std=0.1 Returns: numpy.ndarray: numpy image-like array as uint8 range(0, 255) """ if not is_rgb_image(img) or img.dtype != np.uint8: raise TypeError("Image must be RGB image in uint8 format.") orig_img = img.astype(float).copy() img = img / 255.0 # rescale to 0 to 1 range # flatten image to columns of RGB img_rs = img.reshape(-1, 3) # img_rs shape (640000, 3) # center mean img_centered = img_rs - np.mean(img_rs, axis=0) # paper says 3x3 covariance matrix img_cov = np.cov(img_centered, rowvar=False) # eigen values and eigen vectors eig_vals, eig_vecs = np.linalg.eigh(img_cov) # sort values and vector sort_perm = eig_vals[::-1].argsort() eig_vals[::-1].sort() eig_vecs = eig_vecs[:, sort_perm] # get [p1, p2, p3] m1 = np.column_stack((eig_vecs)) # get 3x1 matrix of eigen values multiplied by random variable draw from normal # distribution with mean of 0 and standard deviation of 0.1 m2 = np.zeros((3, 1)) # according to the paper alpha should only be draw once per augmentation (not once per channel) # alpha = np.random.normal(0, alpha_std) # broad cast to speed things up m2[:, 0] = alpha * eig_vals[:] # this is the vector that we're going to add to each pixel in a moment add_vect = np.matrix(m1) * np.matrix(m2) for idx in range(3): # RGB orig_img[..., idx] += add_vect[idx] * 255 # for image processing it was found that working with float 0.0 to 1.0 # was easier than integers between 0-255 # orig_img /= 255.0 orig_img = np.clip(orig_img, 0.0, 255.0) # orig_img *= 255 orig_img = orig_img.astype(np.uint8) return orig_img def _adjust_brightness_torchvision_uint8(img, factor): lut = np.arange(0, 256) * factor lut = np.clip(lut, 0, 255).astype(np.uint8) return cv2.LUT(img, lut) @preserve_shape def adjust_brightness_torchvision(img, factor): if factor == 0: return np.zeros_like(img) elif factor == 1: return img if img.dtype == np.uint8: return _adjust_brightness_torchvision_uint8(img, factor) return clip(img * factor, img.dtype, MAX_VALUES_BY_DTYPE[img.dtype]) def _adjust_contrast_torchvision_uint8(img, factor, mean): lut = np.arange(0, 256) * factor lut = lut + mean * (1 - factor) lut = clip(lut, img.dtype, 255) return cv2.LUT(img, lut) @preserve_shape def adjust_contrast_torchvision(img, factor): if factor == 1: return img if is_grayscale_image(img): mean = img.mean() else: mean = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY).mean() if factor == 0: if img.dtype != np.float32: mean = int(mean + 0.5) return np.full_like(img, mean, dtype=img.dtype) if img.dtype == np.uint8: return _adjust_contrast_torchvision_uint8(img, factor, mean) return clip( img.astype(np.float32) * factor + mean * (1 - factor), img.dtype, MAX_VALUES_BY_DTYPE[img.dtype], ) @preserve_shape def adjust_saturation_torchvision(img, factor, gamma=0): if factor == 1: return img if is_grayscale_image(img): gray = img return gray else: gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) gray = cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB) if factor == 0: return gray result = cv2.addWeighted(img, factor, gray, 1 - factor, gamma=gamma) if img.dtype == np.uint8: return result # OpenCV does not clip values for float dtype return clip(result, img.dtype, MAX_VALUES_BY_DTYPE[img.dtype]) def _adjust_hue_torchvision_uint8(img, factor): img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) lut = np.arange(0, 256, dtype=np.int16) lut = np.mod(lut + 180 * factor, 180).astype(np.uint8) img[..., 0] = cv2.LUT(img[..., 0], lut) return cv2.cvtColor(img, cv2.COLOR_HSV2RGB) def adjust_hue_torchvision(img, factor): if is_grayscale_image(img): return img if factor == 0: return img if img.dtype == np.uint8: return _adjust_hue_torchvision_uint8(img, factor) img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV) img[..., 0] = np.mod(img[..., 0] + factor * 360, 360) return cv2.cvtColor(img, cv2.COLOR_HSV2RGB) @preserve_shape def superpixels( image: np.ndarray, n_segments: int, replace_samples: Sequence[bool], max_size: Optional[int], interpolation: int ) -> np.ndarray: if not np.any(replace_samples): return image orig_shape = image.shape if max_size is not None: size = max(image.shape[:2]) if size > max_size: scale = max_size / size height, width = image.shape[:2] new_height, new_width = int(height * scale), int(width * scale) resize_fn = _maybe_process_in_chunks(cv2.resize, dsize=(new_width, new_height), interpolation=interpolation) image = resize_fn(image) segments = skimage.segmentation.slic( image, n_segments=n_segments, compactness=10, channel_axis=-1 if image.ndim > 2 else None ) min_value = 0 max_value = MAX_VALUES_BY_DTYPE[image.dtype] image = np.copy(image) if image.ndim == 2: image = image.reshape(*image.shape, 1) nb_channels = image.shape[2] for c in range(nb_channels): # segments+1 here because otherwise regionprops always misses the last label regions = skimage.measure.regionprops(segments + 1, intensity_image=image[..., c]) for ridx, region in enumerate(regions): # with mod here, because slic can sometimes create more superpixel than requested. # replace_samples then does not have enough values, so we just start over with the first one again. if replace_samples[ridx % len(replace_samples)]: mean_intensity = region.mean_intensity image_sp_c = image[..., c] if image_sp_c.dtype.kind in ["i", "u", "b"]: # After rounding the value can end up slightly outside of the value_range. Hence, we need to clip. # We do clip via min(max(...)) instead of np.clip because # the latter one does not seem to keep dtypes for dtypes with large itemsizes (e.g. uint64). value: Union[int, float] value = int(np.round(mean_intensity)) value = min(max(value, min_value), max_value) else: value = mean_intensity image_sp_c[segments == ridx] = value if orig_shape != image.shape: resize_fn = _maybe_process_in_chunks( cv2.resize, dsize=(orig_shape[1], orig_shape[0]), interpolation=interpolation ) image = resize_fn(image) return image @clipped def add_weighted(img1, alpha, img2, beta): return img1.astype(float) * alpha + img2.astype(float) * beta @clipped @preserve_shape def unsharp_mask(image: np.ndarray, ksize: int, sigma: float = 0.0, alpha: float = 0.2, threshold: int = 10): blur_fn = _maybe_process_in_chunks(cv2.GaussianBlur, ksize=(ksize, ksize), sigmaX=sigma) input_dtype = image.dtype if input_dtype == np.uint8: image = to_float(image) elif input_dtype not in (np.uint8, np.float32): raise ValueError("Unexpected dtype {} for UnsharpMask augmentation".format(input_dtype)) blur = blur_fn(image) residual = image - blur # Do not sharpen noise mask = np.abs(residual) * 255 > threshold mask = mask.astype("float32") sharp = image + alpha * residual # Avoid color noise artefacts. sharp = np.clip(sharp, 0, 1) soft_mask = blur_fn(mask) output = soft_mask * sharp + (1 - soft_mask) * image return from_float(output, dtype=input_dtype) @preserve_shape def pixel_dropout(image: np.ndarray, drop_mask: np.ndarray, drop_value: Union[float, Sequence[float]]) -> np.ndarray: if isinstance(drop_value, (int, float)) and drop_value == 0: drop_values = np.zeros_like(image) else: drop_values = np.full_like(image, drop_value) # type: ignore return np.where(drop_mask, drop_values, image) @clipped @preserve_shape def spatter( img: np.ndarray, non_mud: Optional[np.ndarray], mud: Optional[np.ndarray], rain: Optional[np.ndarray], mode: str, ) -> np.ndarray: non_rgb_warning(img) coef = MAX_VALUES_BY_DTYPE[img.dtype] img = img.astype(np.float32) * (1 / coef) if mode == "rain": assert rain is not None img = img + rain elif mode == "mud": assert non_mud is not None and mud is not None img = img * non_mud + mud else: raise ValueError("Unsupported spatter mode: " + str(mode)) return img * 255