""" This part reuses code from https://github.com/MandyMo/pytorch_HMR/blob/master/src/util.py which is part of a PyTorch port of SMPL. Thanks to Zhang Xiong (MandyMo) for making this great code available on github ! """ import argparse from torch.autograd import gradcheck import torch from torch.autograd import Variable from custom_manopth import argutils def quat2mat(quat): """Convert quaternion coefficients to rotation matrix. Args: quat: size = [batch_size, 4] 4 <===>(w, x, y, z) Returns: Rotation matrix corresponding to the quaternion -- size = [batch_size, 3, 3] """ norm_quat = quat norm_quat = norm_quat / norm_quat.norm(p=2, dim=1, keepdim=True) w, x, y, z = norm_quat[:, 0], norm_quat[:, 1], norm_quat[:, 2], norm_quat[:, 3] batch_size = quat.size(0) w2, x2, y2, z2 = w.pow(2), x.pow(2), y.pow(2), z.pow(2) wx, wy, wz = w * x, w * y, w * z xy, xz, yz = x * y, x * z, y * z rotMat = torch.stack([ w2 + x2 - y2 - z2, 2 * xy - 2 * wz, 2 * wy + 2 * xz, 2 * wz + 2 * xy, w2 - x2 + y2 - z2, 2 * yz - 2 * wx, 2 * xz - 2 * wy, 2 * wx + 2 * yz, w2 - x2 - y2 + z2 ], dim=1).view(batch_size, 3, 3) return rotMat def batch_rodrigues(axisang): #axisang N x 3 axisang_norm = torch.norm(axisang + 1e-8, p=2, dim=1) angle = torch.unsqueeze(axisang_norm, -1) axisang_normalized = torch.div(axisang, angle) angle = angle * 0.5 v_cos = torch.cos(angle) v_sin = torch.sin(angle) quat = torch.cat([v_cos, v_sin * axisang_normalized], dim=1) rot_mat = quat2mat(quat) rot_mat = rot_mat.view(rot_mat.shape[0], 9) return rot_mat def th_get_axis_angle(vector): angle = torch.norm(vector, 2, 1) axes = vector / angle.unsqueeze(1) return axes, angle if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--batch_size', default=1, type=int) parser.add_argument('--cuda', action='store_true') args = parser.parse_args() argutils.print_args(args) n_components = 6 rot = 3 inputs = torch.rand(args.batch_size, rot) inputs_var = Variable(inputs.double(), requires_grad=True) if args.cuda: inputs = inputs.cuda() # outputs = batch_rodrigues(inputs) test_function = gradcheck(batch_rodrigues, (inputs_var, )) print('batch test passed !') inputs = torch.rand(rot) inputs_var = Variable(inputs.double(), requires_grad=True) test_function = gradcheck(th_cv2_rod_sub_id.apply, (inputs_var, )) print('th_cv2_rod test passed') inputs = torch.rand(rot) inputs_var = Variable(inputs.double(), requires_grad=True) test_th = gradcheck(th_cv2_rod.apply, (inputs_var, )) print('th_cv2_rod_id test passed !')