import torch def compute_rotation_matrix_from_ortho6d(poses): """ Code from https://github.com/papagina/RotationContinuity On the Continuity of Rotation Representations in Neural Networks Zhou et al. CVPR19 https://zhouyisjtu.github.io/project_rotation/rotation.html """ x_raw = poses[:, 0:3] # batch*3 y_raw = poses[:, 3:6] # batch*3 x = normalize_vector(x_raw) # batch*3 z = cross_product(x, y_raw) # batch*3 z = normalize_vector(z) # batch*3 y = cross_product(z, x) # batch*3 x = x.view(-1, 3, 1) y = y.view(-1, 3, 1) z = z.view(-1, 3, 1) matrix = torch.cat((x, y, z), 2) # batch*3*3 return matrix def robust_compute_rotation_matrix_from_ortho6d(poses): """ Instead of making 2nd vector orthogonal to first create a base that takes into account the two predicted directions equally """ x_raw = poses[:, 0:3] # batch*3 y_raw = poses[:, 3:6] # batch*3 x = normalize_vector(x_raw) # batch*3 y = normalize_vector(y_raw) # batch*3 middle = normalize_vector(x + y) orthmid = normalize_vector(x - y) x = normalize_vector(middle + orthmid) y = normalize_vector(middle - orthmid) # Their scalar product should be small ! # assert torch.einsum("ij,ij->i", [x, y]).abs().max() < 0.00001 z = normalize_vector(cross_product(x, y)) x = x.view(-1, 3, 1) y = y.view(-1, 3, 1) z = z.view(-1, 3, 1) matrix = torch.cat((x, y, z), 2) # batch*3*3 # Check for reflection in matrix ! If found, flip last vector TODO assert (torch.stack([torch.det(mat) for mat in matrix ])< 0).sum() == 0 return matrix def normalize_vector(v): batch = v.shape[0] v_mag = torch.sqrt(v.pow(2).sum(1)) # batch v_mag = torch.max(v_mag, v.new([1e-8])) v_mag = v_mag.view(batch, 1).expand(batch, v.shape[1]) v = v/v_mag return v def cross_product(u, v): batch = u.shape[0] i = u[:, 1] * v[:, 2] - u[:, 2] * v[:, 1] j = u[:, 2] * v[:, 0] - u[:, 0] * v[:, 2] k = u[:, 0] * v[:, 1] - u[:, 1] * v[:, 0] out = torch.cat((i.view(batch, 1), j.view(batch, 1), k.view(batch, 1)), 1) return out