# -*- coding: utf-8 -*- # Copyright (c) Facebook, Inc. and its affiliates. from custom_detectron2.config import CfgNode as CN __all__ = ["add_common_config", "add_oneformer_config", "add_swin_config", "add_dinat_config", "add_beit_adapter_config", "add_convnext_config"] def add_common_config(cfg): """ Add config for common configuration """ # data config # select the dataset mapper cfg.INPUT.DATASET_MAPPER_NAME = "oneformer_unified" # Color augmentation cfg.INPUT.COLOR_AUG_SSD = False # We retry random cropping until no single category in semantic segmentation GT occupies more # than `SINGLE_CATEGORY_MAX_AREA` part of the crop. cfg.INPUT.CROP.SINGLE_CATEGORY_MAX_AREA = 1.0 # Pad image and segmentation GT in dataset mapper. cfg.INPUT.SIZE_DIVISIBILITY = -1 cfg.INPUT.TASK_SEQ_LEN = 77 cfg.INPUT.MAX_SEQ_LEN = 77 cfg.INPUT.TASK_PROB = CN() cfg.INPUT.TASK_PROB.SEMANTIC = 0.33 cfg.INPUT.TASK_PROB.INSTANCE = 0.66 # test dataset cfg.DATASETS.TEST_PANOPTIC = ("",) cfg.DATASETS.TEST_INSTANCE = ("",) cfg.DATASETS.TEST_SEMANTIC = ("",) # solver config # weight decay on embedding cfg.SOLVER.WEIGHT_DECAY_EMBED = 0.0 # optimizer cfg.SOLVER.OPTIMIZER = "ADAMW" cfg.SOLVER.BACKBONE_MULTIPLIER = 0.1 # wandb cfg.WANDB = CN() cfg.WANDB.PROJECT = "unified_dense_recognition" cfg.WANDB.NAME = None cfg.MODEL.IS_TRAIN = False cfg.MODEL.IS_DEMO = True # text encoder config cfg.MODEL.TEXT_ENCODER = CN() cfg.MODEL.TEXT_ENCODER.WIDTH = 256 cfg.MODEL.TEXT_ENCODER.CONTEXT_LENGTH = 77 cfg.MODEL.TEXT_ENCODER.NUM_LAYERS = 12 cfg.MODEL.TEXT_ENCODER.VOCAB_SIZE = 49408 cfg.MODEL.TEXT_ENCODER.PROJ_NUM_LAYERS = 2 cfg.MODEL.TEXT_ENCODER.N_CTX = 16 # mask_former inference config cfg.MODEL.TEST = CN() cfg.MODEL.TEST.SEMANTIC_ON = True cfg.MODEL.TEST.INSTANCE_ON = False cfg.MODEL.TEST.PANOPTIC_ON = False cfg.MODEL.TEST.DETECTION_ON = False cfg.MODEL.TEST.OBJECT_MASK_THRESHOLD = 0.0 cfg.MODEL.TEST.OVERLAP_THRESHOLD = 0.0 cfg.MODEL.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE = False cfg.MODEL.TEST.TASK = "panoptic" # TEST AUG Slide cfg.TEST.AUG.IS_SLIDE = False cfg.TEST.AUG.CROP_SIZE = (640, 640) cfg.TEST.AUG.STRIDE = (426, 426) cfg.TEST.AUG.SCALE = (2048, 640) cfg.TEST.AUG.SETR_MULTI_SCALE = True cfg.TEST.AUG.KEEP_RATIO = True cfg.TEST.AUG.SIZE_DIVISOR = 32 # pixel decoder config cfg.MODEL.SEM_SEG_HEAD.MASK_DIM = 256 # adding transformer in pixel decoder cfg.MODEL.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS = 0 # pixel decoder cfg.MODEL.SEM_SEG_HEAD.PIXEL_DECODER_NAME = "BasePixelDecoder" cfg.MODEL.SEM_SEG_HEAD.SEM_EMBED_DIM = 256 cfg.MODEL.SEM_SEG_HEAD.INST_EMBED_DIM = 256 # LSJ aug cfg.INPUT.IMAGE_SIZE = 1024 cfg.INPUT.MIN_SCALE = 0.1 cfg.INPUT.MAX_SCALE = 2.0 # MSDeformAttn encoder configs cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_IN_FEATURES = ["res3", "res4", "res5"] cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_POINTS = 4 cfg.MODEL.SEM_SEG_HEAD.DEFORMABLE_TRANSFORMER_ENCODER_N_HEADS = 8 def add_oneformer_config(cfg): """ Add config for ONE_FORMER. """ # mask_former model config cfg.MODEL.ONE_FORMER = CN() # loss cfg.MODEL.ONE_FORMER.DEEP_SUPERVISION = True cfg.MODEL.ONE_FORMER.NO_OBJECT_WEIGHT = 0.1 cfg.MODEL.ONE_FORMER.CLASS_WEIGHT = 1.0 cfg.MODEL.ONE_FORMER.DICE_WEIGHT = 1.0 cfg.MODEL.ONE_FORMER.MASK_WEIGHT = 20.0 cfg.MODEL.ONE_FORMER.CONTRASTIVE_WEIGHT = 0.5 cfg.MODEL.ONE_FORMER.CONTRASTIVE_TEMPERATURE = 0.07 # transformer config cfg.MODEL.ONE_FORMER.NHEADS = 8 cfg.MODEL.ONE_FORMER.DROPOUT = 0.1 cfg.MODEL.ONE_FORMER.DIM_FEEDFORWARD = 2048 cfg.MODEL.ONE_FORMER.ENC_LAYERS = 0 cfg.MODEL.ONE_FORMER.CLASS_DEC_LAYERS = 2 cfg.MODEL.ONE_FORMER.DEC_LAYERS = 6 cfg.MODEL.ONE_FORMER.PRE_NORM = False cfg.MODEL.ONE_FORMER.HIDDEN_DIM = 256 cfg.MODEL.ONE_FORMER.NUM_OBJECT_QUERIES = 120 cfg.MODEL.ONE_FORMER.NUM_OBJECT_CTX = 16 cfg.MODEL.ONE_FORMER.USE_TASK_NORM = True cfg.MODEL.ONE_FORMER.TRANSFORMER_IN_FEATURE = "res5" cfg.MODEL.ONE_FORMER.ENFORCE_INPUT_PROJ = False # Sometimes `backbone.size_divisibility` is set to 0 for some backbone (e.g. ResNet) # you can use this config to override cfg.MODEL.ONE_FORMER.SIZE_DIVISIBILITY = 32 # transformer module cfg.MODEL.ONE_FORMER.TRANSFORMER_DECODER_NAME = "ContrastiveMultiScaleMaskedTransformerDecoder" # point loss configs # Number of points sampled during training for a mask point head. cfg.MODEL.ONE_FORMER.TRAIN_NUM_POINTS = 112 * 112 # Oversampling parameter for PointRend point sampling during training. Parameter `k` in the # original paper. cfg.MODEL.ONE_FORMER.OVERSAMPLE_RATIO = 3.0 # Importance sampling parameter for PointRend point sampling during training. Parametr `beta` in # the original paper. cfg.MODEL.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO = 0.75 def add_swin_config(cfg): """ Add config forSWIN Backbone. """ # swin transformer backbone cfg.MODEL.SWIN = CN() cfg.MODEL.SWIN.PRETRAIN_IMG_SIZE = 224 cfg.MODEL.SWIN.PATCH_SIZE = 4 cfg.MODEL.SWIN.EMBED_DIM = 96 cfg.MODEL.SWIN.DEPTHS = [2, 2, 6, 2] cfg.MODEL.SWIN.NUM_HEADS = [3, 6, 12, 24] cfg.MODEL.SWIN.WINDOW_SIZE = 7 cfg.MODEL.SWIN.MLP_RATIO = 4.0 cfg.MODEL.SWIN.QKV_BIAS = True cfg.MODEL.SWIN.QK_SCALE = None cfg.MODEL.SWIN.DROP_RATE = 0.0 cfg.MODEL.SWIN.ATTN_DROP_RATE = 0.0 cfg.MODEL.SWIN.DROP_PATH_RATE = 0.3 cfg.MODEL.SWIN.APE = False cfg.MODEL.SWIN.PATCH_NORM = True cfg.MODEL.SWIN.OUT_FEATURES = ["res2", "res3", "res4", "res5"] cfg.MODEL.SWIN.USE_CHECKPOINT = False ## Semask additions cfg.MODEL.SWIN.SEM_WINDOW_SIZE = 7 cfg.MODEL.SWIN.NUM_SEM_BLOCKS = 1 def add_dinat_config(cfg): """ Add config for NAT Backbone. """ # DINAT transformer backbone cfg.MODEL.DiNAT = CN() cfg.MODEL.DiNAT.DEPTHS = [3, 4, 18, 5] cfg.MODEL.DiNAT.OUT_FEATURES = ["res2", "res3", "res4", "res5"] cfg.MODEL.DiNAT.EMBED_DIM = 64 cfg.MODEL.DiNAT.MLP_RATIO = 3.0 cfg.MODEL.DiNAT.NUM_HEADS = [2, 4, 8, 16] cfg.MODEL.DiNAT.DROP_PATH_RATE = 0.2 cfg.MODEL.DiNAT.KERNEL_SIZE = 7 cfg.MODEL.DiNAT.DILATIONS = [[1, 16, 1], [1, 4, 1, 8], [1, 2, 1, 3, 1, 4], [1, 2, 1, 2, 1]] cfg.MODEL.DiNAT.OUT_INDICES = (0, 1, 2, 3) cfg.MODEL.DiNAT.QKV_BIAS = True cfg.MODEL.DiNAT.QK_SCALE = None cfg.MODEL.DiNAT.DROP_RATE = 0 cfg.MODEL.DiNAT.ATTN_DROP_RATE = 0. cfg.MODEL.DiNAT.IN_PATCH_SIZE = 4 def add_convnext_config(cfg): """ Add config for ConvNeXt Backbone. """ # swin transformer backbone cfg.MODEL.CONVNEXT = CN() cfg.MODEL.CONVNEXT.IN_CHANNELS = 3 cfg.MODEL.CONVNEXT.DEPTHS = [3, 3, 27, 3] cfg.MODEL.CONVNEXT.DIMS = [192, 384, 768, 1536] cfg.MODEL.CONVNEXT.DROP_PATH_RATE = 0.4 cfg.MODEL.CONVNEXT.LSIT = 1.0 cfg.MODEL.CONVNEXT.OUT_INDICES = [0, 1, 2, 3] cfg.MODEL.CONVNEXT.OUT_FEATURES = ["res2", "res3", "res4", "res5"] def add_beit_adapter_config(cfg): """ Add config for BEiT Adapter Backbone. """ # beit adapter backbone cfg.MODEL.BEiTAdapter = CN() cfg.MODEL.BEiTAdapter.IMG_SIZE = 640 cfg.MODEL.BEiTAdapter.PATCH_SIZE = 16 cfg.MODEL.BEiTAdapter.EMBED_DIM = 1024 cfg.MODEL.BEiTAdapter.DEPTH = 24 cfg.MODEL.BEiTAdapter.NUM_HEADS = 16 cfg.MODEL.BEiTAdapter.MLP_RATIO = 4 cfg.MODEL.BEiTAdapter.QKV_BIAS = True cfg.MODEL.BEiTAdapter.USE_ABS_POS_EMB = False cfg.MODEL.BEiTAdapter.USE_REL_POS_BIAS = True cfg.MODEL.BEiTAdapter.INIT_VALUES = 1e-6 cfg.MODEL.BEiTAdapter.DROP_PATH_RATE = 0.3 cfg.MODEL.BEiTAdapter.CONV_INPLANE = 64 cfg.MODEL.BEiTAdapter.N_POINTS = 4 cfg.MODEL.BEiTAdapter.DEFORM_NUM_HEADS = 16 cfg.MODEL.BEiTAdapter.CFFN_RATIO = 0.25 cfg.MODEL.BEiTAdapter.DEFORM_RATIO = 0.5 cfg.MODEL.BEiTAdapter.WITH_CP = True cfg.MODEL.BEiTAdapter.INTERACTION_INDEXES=[[0, 5], [6, 11], [12, 17], [18, 23]] cfg.MODEL.BEiTAdapter.OUT_FEATURES = ["res2", "res3", "res4", "res5"]