""" MobileNet V3 A PyTorch impl of MobileNet-V3, compatible with TF weights from official impl. Paper: Searching for MobileNetV3 - https://arxiv.org/abs/1905.02244 Hacked together by / Copyright 2019, Ross Wightman """ from functools import partial from typing import List import torch import torch.nn as nn import torch.nn.functional as F from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_INCEPTION_MEAN, IMAGENET_INCEPTION_STD from .efficientnet_blocks import SqueezeExcite from .efficientnet_builder import EfficientNetBuilder, decode_arch_def, efficientnet_init_weights,\ round_channels, resolve_bn_args, resolve_act_layer, BN_EPS_TF_DEFAULT from .features import FeatureInfo, FeatureHooks from .helpers import build_model_with_cfg, pretrained_cfg_for_features, checkpoint_seq from .layers import SelectAdaptivePool2d, Linear, create_conv2d, get_act_fn, get_norm_act_layer from .registry import register_model __all__ = ['MobileNetV3', 'MobileNetV3Features'] def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7), 'crop_pct': 0.875, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'conv_stem', 'classifier': 'classifier', **kwargs } default_cfgs = { 'mobilenetv3_large_075': _cfg(url=''), 'mobilenetv3_large_100': _cfg( interpolation='bicubic', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_large_100_ra-f55367f5.pth'), 'mobilenetv3_large_100_miil': _cfg( interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_1k_miil_78_0-66471c13.pth'), 'mobilenetv3_large_100_miil_in21k': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tresnet/mobilenetv3_large_100_in21k_miil-d71cc17b.pth', interpolation='bilinear', mean=(0., 0., 0.), std=(1., 1., 1.), num_classes=11221), 'mobilenetv3_small_050': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_050_lambc-4b7bbe87.pth', interpolation='bicubic'), 'mobilenetv3_small_075': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_075_lambc-384766db.pth', interpolation='bicubic'), 'mobilenetv3_small_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_small_100_lamb-266a294c.pth', interpolation='bicubic'), 'mobilenetv3_rw': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/mobilenetv3_100-35495452.pth', interpolation='bicubic'), 'tf_mobilenetv3_large_075': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_075-150ee8b0.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_large_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_100-427764d5.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_large_minimal_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_large_minimal_100-8596ae28.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_075': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_075-da427f52.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_100': _cfg( url= 'https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_100-37f49e2b.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'tf_mobilenetv3_small_minimal_100': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/tf_mobilenetv3_small_minimal_100-922a7843.pth', mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD), 'fbnetv3_b': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_b_224-ead5d2a1.pth', test_input_size=(3, 256, 256), crop_pct=0.95), 'fbnetv3_d': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_d_224-c98bce42.pth', test_input_size=(3, 256, 256), crop_pct=0.95), 'fbnetv3_g': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/fbnetv3_g_240-0b1df83b.pth', input_size=(3, 240, 240), test_input_size=(3, 288, 288), crop_pct=0.95, pool_size=(8, 8)), "lcnet_035": _cfg(), "lcnet_050": _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_050-f447553b.pth', interpolation='bicubic', ), "lcnet_075": _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_075-318cad2c.pth', interpolation='bicubic', ), "lcnet_100": _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/lcnet_100-a929038c.pth', interpolation='bicubic', ), "lcnet_150": _cfg(), } class MobileNetV3(nn.Module): """ MobiletNet-V3 Based on my EfficientNet implementation and building blocks, this model utilizes the MobileNet-v3 specific 'efficient head', where global pooling is done before the head convolution without a final batch-norm layer before the classifier. Paper: `Searching for MobileNetV3` - https://arxiv.org/abs/1905.02244 Other architectures utilizing MobileNet-V3 efficient head that are supported by this impl include: * HardCoRe-NAS - https://arxiv.org/abs/2102.11646 (defn in hardcorenas.py uses this class) * FBNet-V3 - https://arxiv.org/abs/2006.02049 * LCNet - https://arxiv.org/abs/2109.15099 """ def __init__( self, block_args, num_classes=1000, in_chans=3, stem_size=16, fix_stem=False, num_features=1280, head_bias=True, pad_type='', act_layer=None, norm_layer=None, se_layer=None, se_from_exp=True, round_chs_fn=round_channels, drop_rate=0., drop_path_rate=0., global_pool='avg'): super(MobileNetV3, self).__init__() act_layer = act_layer or nn.ReLU norm_layer = norm_layer or nn.BatchNorm2d norm_act_layer = get_norm_act_layer(norm_layer, act_layer) se_layer = se_layer or SqueezeExcite self.num_classes = num_classes self.num_features = num_features self.drop_rate = drop_rate self.grad_checkpointing = False # Stem if not fix_stem: stem_size = round_chs_fn(stem_size) self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_act_layer(stem_size, inplace=True) # Middle stages (IR/ER/DS Blocks) builder = EfficientNetBuilder( output_stride=32, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp, act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, drop_path_rate=drop_path_rate) self.blocks = nn.Sequential(*builder(stem_size, block_args)) self.feature_info = builder.features head_chs = builder.in_chs # Head + Pooling self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) num_pooled_chs = head_chs * self.global_pool.feat_mult() self.conv_head = create_conv2d(num_pooled_chs, self.num_features, 1, padding=pad_type, bias=head_bias) self.act2 = act_layer(inplace=True) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() efficientnet_init_weights(self) def as_sequential(self): layers = [self.conv_stem, self.bn1] layers.extend(self.blocks) layers.extend([self.global_pool, self.conv_head, self.act2]) layers.extend([nn.Flatten(), nn.Dropout(self.drop_rate), self.classifier]) return nn.Sequential(*layers) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^conv_stem|bn1', blocks=r'^blocks\.(\d+)' if coarse else r'^blocks\.(\d+)\.(\d+)' ) @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.classifier def reset_classifier(self, num_classes, global_pool='avg'): self.num_classes = num_classes # cannot meaningfully change pooling of efficient head after creation self.global_pool = SelectAdaptivePool2d(pool_type=global_pool) self.flatten = nn.Flatten(1) if global_pool else nn.Identity() # don't flatten if pooling disabled self.classifier = Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.conv_stem(x) x = self.bn1(x) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x, flatten=True) else: x = self.blocks(x) return x def forward_head(self, x, pre_logits: bool = False): x = self.global_pool(x) x = self.conv_head(x) x = self.act2(x) if pre_logits: return x.flatten(1) else: x = self.flatten(x) if self.drop_rate > 0.: x = F.dropout(x, p=self.drop_rate, training=self.training) return self.classifier(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x class MobileNetV3Features(nn.Module): """ MobileNetV3 Feature Extractor A work-in-progress feature extraction module for MobileNet-V3 to use as a backbone for segmentation and object detection models. """ def __init__( self, block_args, out_indices=(0, 1, 2, 3, 4), feature_location='bottleneck', in_chans=3, stem_size=16, fix_stem=False, output_stride=32, pad_type='', round_chs_fn=round_channels, se_from_exp=True, act_layer=None, norm_layer=None, se_layer=None, drop_rate=0., drop_path_rate=0.): super(MobileNetV3Features, self).__init__() act_layer = act_layer or nn.ReLU norm_layer = norm_layer or nn.BatchNorm2d se_layer = se_layer or SqueezeExcite self.drop_rate = drop_rate # Stem if not fix_stem: stem_size = round_chs_fn(stem_size) self.conv_stem = create_conv2d(in_chans, stem_size, 3, stride=2, padding=pad_type) self.bn1 = norm_layer(stem_size) self.act1 = act_layer(inplace=True) # Middle stages (IR/ER/DS Blocks) builder = EfficientNetBuilder( output_stride=output_stride, pad_type=pad_type, round_chs_fn=round_chs_fn, se_from_exp=se_from_exp, act_layer=act_layer, norm_layer=norm_layer, se_layer=se_layer, drop_path_rate=drop_path_rate, feature_location=feature_location) self.blocks = nn.Sequential(*builder(stem_size, block_args)) self.feature_info = FeatureInfo(builder.features, out_indices) self._stage_out_idx = {v['stage']: i for i, v in enumerate(self.feature_info) if i in out_indices} efficientnet_init_weights(self) # Register feature extraction hooks with FeatureHooks helper self.feature_hooks = None if feature_location != 'bottleneck': hooks = self.feature_info.get_dicts(keys=('module', 'hook_type')) self.feature_hooks = FeatureHooks(hooks, self.named_modules()) def forward(self, x) -> List[torch.Tensor]: x = self.conv_stem(x) x = self.bn1(x) x = self.act1(x) if self.feature_hooks is None: features = [] if 0 in self._stage_out_idx: features.append(x) # add stem out for i, b in enumerate(self.blocks): x = b(x) if i + 1 in self._stage_out_idx: features.append(x) return features else: self.blocks(x) out = self.feature_hooks.get_output(x.device) return list(out.values()) def _create_mnv3(variant, pretrained=False, **kwargs): features_only = False model_cls = MobileNetV3 kwargs_filter = None if kwargs.pop('features_only', False): features_only = True kwargs_filter = ('num_classes', 'num_features', 'head_conv', 'head_bias', 'global_pool') model_cls = MobileNetV3Features model = build_model_with_cfg( model_cls, variant, pretrained, pretrained_strict=not features_only, kwargs_filter=kwargs_filter, **kwargs) if features_only: model.default_cfg = pretrained_cfg_for_features(model.default_cfg) return model def _gen_mobilenet_v3_rw(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a MobileNet-V3 model. Ref impl: ? Paper: https://arxiv.org/abs/1905.02244 Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_nre_noskip'], # relu # stage 1, 112x112 in ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu # stage 3, 28x28 in ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish # stage 4, 14x14in ['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish # stage 5, 14x14in ['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish # stage 6, 7x7 in ['cn_r1_k1_s1_c960'], # hard-swish ] model_kwargs = dict( block_args=decode_arch_def(arch_def), head_bias=False, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'hard_swish'), se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid'), **kwargs, ) model = _create_mnv3(variant, pretrained, **model_kwargs) return model def _gen_mobilenet_v3(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """Creates a MobileNet-V3 model. Ref impl: ? Paper: https://arxiv.org/abs/1905.02244 Args: channel_multiplier: multiplier to number of channels per layer. """ if 'small' in variant: num_features = 1024 if 'minimal' in variant: act_layer = resolve_act_layer(kwargs, 'relu') arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s2_e1_c16'], # stage 1, 56x56 in ['ir_r1_k3_s2_e4.5_c24', 'ir_r1_k3_s1_e3.67_c24'], # stage 2, 28x28 in ['ir_r1_k3_s2_e4_c40', 'ir_r2_k3_s1_e6_c40'], # stage 3, 14x14 in ['ir_r2_k3_s1_e3_c48'], # stage 4, 14x14in ['ir_r3_k3_s2_e6_c96'], # stage 6, 7x7 in ['cn_r1_k1_s1_c576'], ] else: act_layer = resolve_act_layer(kwargs, 'hard_swish') arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s2_e1_c16_se0.25_nre'], # relu # stage 1, 56x56 in ['ir_r1_k3_s2_e4.5_c24_nre', 'ir_r1_k3_s1_e3.67_c24_nre'], # relu # stage 2, 28x28 in ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r2_k5_s1_e6_c40_se0.25'], # hard-swish # stage 3, 14x14 in ['ir_r2_k5_s1_e3_c48_se0.25'], # hard-swish # stage 4, 14x14in ['ir_r3_k5_s2_e6_c96_se0.25'], # hard-swish # stage 6, 7x7 in ['cn_r1_k1_s1_c576'], # hard-swish ] else: num_features = 1280 if 'minimal' in variant: act_layer = resolve_act_layer(kwargs, 'relu') arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16'], # stage 1, 112x112 in ['ir_r1_k3_s2_e4_c24', 'ir_r1_k3_s1_e3_c24'], # stage 2, 56x56 in ['ir_r3_k3_s2_e3_c40'], # stage 3, 28x28 in ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # stage 4, 14x14in ['ir_r2_k3_s1_e6_c112'], # stage 5, 14x14in ['ir_r3_k3_s2_e6_c160'], # stage 6, 7x7 in ['cn_r1_k1_s1_c960'], ] else: act_layer = resolve_act_layer(kwargs, 'hard_swish') arch_def = [ # stage 0, 112x112 in ['ds_r1_k3_s1_e1_c16_nre'], # relu # stage 1, 112x112 in ['ir_r1_k3_s2_e4_c24_nre', 'ir_r1_k3_s1_e3_c24_nre'], # relu # stage 2, 56x56 in ['ir_r3_k5_s2_e3_c40_se0.25_nre'], # relu # stage 3, 28x28 in ['ir_r1_k3_s2_e6_c80', 'ir_r1_k3_s1_e2.5_c80', 'ir_r2_k3_s1_e2.3_c80'], # hard-swish # stage 4, 14x14in ['ir_r2_k3_s1_e6_c112_se0.25'], # hard-swish # stage 5, 14x14in ['ir_r3_k5_s2_e6_c160_se0.25'], # hard-swish # stage 6, 7x7 in ['cn_r1_k1_s1_c960'], # hard-swish ] se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU, rd_round_fn=round_channels) model_kwargs = dict( block_args=decode_arch_def(arch_def), num_features=num_features, stem_size=16, fix_stem=channel_multiplier < 0.75, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=act_layer, se_layer=se_layer, **kwargs, ) model = _create_mnv3(variant, pretrained, **model_kwargs) return model def _gen_fbnetv3(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """ FBNetV3 Paper: `FBNetV3: Joint Architecture-Recipe Search using Predictor Pretraining` - https://arxiv.org/abs/2006.02049 FIXME untested, this is a preliminary impl of some FBNet-V3 variants. """ vl = variant.split('_')[-1] if vl in ('a', 'b'): stem_size = 16 arch_def = [ ['ds_r2_k3_s1_e1_c16'], ['ir_r1_k5_s2_e4_c24', 'ir_r3_k5_s1_e2_c24'], ['ir_r1_k5_s2_e5_c40_se0.25', 'ir_r4_k5_s1_e3_c40_se0.25'], ['ir_r1_k5_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], ['ir_r1_k3_s1_e5_c120_se0.25', 'ir_r5_k5_s1_e3_c120_se0.25'], ['ir_r1_k3_s2_e6_c184_se0.25', 'ir_r5_k5_s1_e4_c184_se0.25', 'ir_r1_k5_s1_e6_c224_se0.25'], ['cn_r1_k1_s1_c1344'], ] elif vl == 'd': stem_size = 24 arch_def = [ ['ds_r2_k3_s1_e1_c16'], ['ir_r1_k3_s2_e5_c24', 'ir_r5_k3_s1_e2_c24'], ['ir_r1_k5_s2_e4_c40_se0.25', 'ir_r4_k3_s1_e3_c40_se0.25'], ['ir_r1_k3_s2_e5_c72', 'ir_r4_k3_s1_e3_c72'], ['ir_r1_k3_s1_e5_c128_se0.25', 'ir_r6_k5_s1_e3_c128_se0.25'], ['ir_r1_k3_s2_e6_c208_se0.25', 'ir_r5_k5_s1_e5_c208_se0.25', 'ir_r1_k5_s1_e6_c240_se0.25'], ['cn_r1_k1_s1_c1440'], ] elif vl == 'g': stem_size = 32 arch_def = [ ['ds_r3_k3_s1_e1_c24'], ['ir_r1_k5_s2_e4_c40', 'ir_r4_k5_s1_e2_c40'], ['ir_r1_k5_s2_e4_c56_se0.25', 'ir_r4_k5_s1_e3_c56_se0.25'], ['ir_r1_k5_s2_e5_c104', 'ir_r4_k3_s1_e3_c104'], ['ir_r1_k3_s1_e5_c160_se0.25', 'ir_r8_k5_s1_e3_c160_se0.25'], ['ir_r1_k3_s2_e6_c264_se0.25', 'ir_r6_k5_s1_e5_c264_se0.25', 'ir_r2_k5_s1_e6_c288_se0.25'], ['cn_r1_k1_s1_c1728'], ] else: raise NotImplemented round_chs_fn = partial(round_channels, multiplier=channel_multiplier, round_limit=0.95) se_layer = partial(SqueezeExcite, gate_layer='hard_sigmoid', rd_round_fn=round_chs_fn) act_layer = resolve_act_layer(kwargs, 'hard_swish') model_kwargs = dict( block_args=decode_arch_def(arch_def), num_features=1984, head_bias=False, stem_size=stem_size, round_chs_fn=round_chs_fn, se_from_exp=False, norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=act_layer, se_layer=se_layer, **kwargs, ) model = _create_mnv3(variant, pretrained, **model_kwargs) return model def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """ LCNet Essentially a MobileNet-V3 crossed with a MobileNet-V1 Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099 Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['dsa_r1_k3_s1_c32'], # stage 1, 112x112 in ['dsa_r2_k3_s2_c64'], # stage 2, 56x56 in ['dsa_r2_k3_s2_c128'], # stage 3, 28x28 in ['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'], # stage 4, 14x14in ['dsa_r4_k5_s1_c256'], # stage 5, 14x14in ['dsa_r2_k5_s2_c512_se0.25'], # 7x7 ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=16, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'hard_swish'), se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU), num_features=1280, **kwargs, ) model = _create_mnv3(variant, pretrained, **model_kwargs) return model def _gen_lcnet(variant, channel_multiplier=1.0, pretrained=False, **kwargs): """ LCNet Essentially a MobileNet-V3 crossed with a MobileNet-V1 Paper: `PP-LCNet: A Lightweight CPU Convolutional Neural Network` - https://arxiv.org/abs/2109.15099 Args: channel_multiplier: multiplier to number of channels per layer. """ arch_def = [ # stage 0, 112x112 in ['dsa_r1_k3_s1_c32'], # stage 1, 112x112 in ['dsa_r2_k3_s2_c64'], # stage 2, 56x56 in ['dsa_r2_k3_s2_c128'], # stage 3, 28x28 in ['dsa_r1_k3_s2_c256', 'dsa_r1_k5_s1_c256'], # stage 4, 14x14in ['dsa_r4_k5_s1_c256'], # stage 5, 14x14in ['dsa_r2_k5_s2_c512_se0.25'], # 7x7 ] model_kwargs = dict( block_args=decode_arch_def(arch_def), stem_size=16, round_chs_fn=partial(round_channels, multiplier=channel_multiplier), norm_layer=partial(nn.BatchNorm2d, **resolve_bn_args(kwargs)), act_layer=resolve_act_layer(kwargs, 'hard_swish'), se_layer=partial(SqueezeExcite, gate_layer='hard_sigmoid', force_act_layer=nn.ReLU), num_features=1280, **kwargs, ) model = _create_mnv3(variant, pretrained, **model_kwargs) return model @register_model def mobilenetv3_large_075(pretrained=False, **kwargs): """ MobileNet V3 """ model = _gen_mobilenet_v3('mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv3_large_100(pretrained=False, **kwargs): """ MobileNet V3 """ model = _gen_mobilenet_v3('mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv3_large_100_miil(pretrained=False, **kwargs): """ MobileNet V3 Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K """ model = _gen_mobilenet_v3('mobilenetv3_large_100_miil', 1.0, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv3_large_100_miil_in21k(pretrained=False, **kwargs): """ MobileNet V3, 21k pretraining Weights taken from: https://github.com/Alibaba-MIIL/ImageNet21K """ model = _gen_mobilenet_v3('mobilenetv3_large_100_miil_in21k', 1.0, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv3_small_050(pretrained=False, **kwargs): """ MobileNet V3 """ model = _gen_mobilenet_v3('mobilenetv3_small_050', 0.50, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv3_small_075(pretrained=False, **kwargs): """ MobileNet V3 """ model = _gen_mobilenet_v3('mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv3_small_100(pretrained=False, **kwargs): """ MobileNet V3 """ model = _gen_mobilenet_v3('mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def mobilenetv3_rw(pretrained=False, **kwargs): """ MobileNet V3 """ if pretrained: # pretrained model trained with non-default BN epsilon kwargs['bn_eps'] = BN_EPS_TF_DEFAULT model = _gen_mobilenet_v3_rw('mobilenetv3_rw', 1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_mobilenetv3_large_075(pretrained=False, **kwargs): """ MobileNet V3 """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mobilenet_v3('tf_mobilenetv3_large_075', 0.75, pretrained=pretrained, **kwargs) return model @register_model def tf_mobilenetv3_large_100(pretrained=False, **kwargs): """ MobileNet V3 """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mobilenet_v3('tf_mobilenetv3_large_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_mobilenetv3_large_minimal_100(pretrained=False, **kwargs): """ MobileNet V3 """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mobilenet_v3('tf_mobilenetv3_large_minimal_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_mobilenetv3_small_075(pretrained=False, **kwargs): """ MobileNet V3 """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mobilenet_v3('tf_mobilenetv3_small_075', 0.75, pretrained=pretrained, **kwargs) return model @register_model def tf_mobilenetv3_small_100(pretrained=False, **kwargs): """ MobileNet V3 """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mobilenet_v3('tf_mobilenetv3_small_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def tf_mobilenetv3_small_minimal_100(pretrained=False, **kwargs): """ MobileNet V3 """ kwargs['bn_eps'] = BN_EPS_TF_DEFAULT kwargs['pad_type'] = 'same' model = _gen_mobilenet_v3('tf_mobilenetv3_small_minimal_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def fbnetv3_b(pretrained=False, **kwargs): """ FBNetV3-B """ model = _gen_fbnetv3('fbnetv3_b', pretrained=pretrained, **kwargs) return model @register_model def fbnetv3_d(pretrained=False, **kwargs): """ FBNetV3-D """ model = _gen_fbnetv3('fbnetv3_d', pretrained=pretrained, **kwargs) return model @register_model def fbnetv3_g(pretrained=False, **kwargs): """ FBNetV3-G """ model = _gen_fbnetv3('fbnetv3_g', pretrained=pretrained, **kwargs) return model @register_model def lcnet_035(pretrained=False, **kwargs): """ PP-LCNet 0.35""" model = _gen_lcnet('lcnet_035', 0.35, pretrained=pretrained, **kwargs) return model @register_model def lcnet_050(pretrained=False, **kwargs): """ PP-LCNet 0.5""" model = _gen_lcnet('lcnet_050', 0.5, pretrained=pretrained, **kwargs) return model @register_model def lcnet_075(pretrained=False, **kwargs): """ PP-LCNet 1.0""" model = _gen_lcnet('lcnet_075', 0.75, pretrained=pretrained, **kwargs) return model @register_model def lcnet_100(pretrained=False, **kwargs): """ PP-LCNet 1.0""" model = _gen_lcnet('lcnet_100', 1.0, pretrained=pretrained, **kwargs) return model @register_model def lcnet_150(pretrained=False, **kwargs): """ PP-LCNet 1.5""" model = _gen_lcnet('lcnet_150', 1.5, pretrained=pretrained, **kwargs) return model