""" Multi-Scale Vision Transformer v2 @inproceedings{li2021improved, title={MViTv2: Improved multiscale vision transformers for classification and detection}, author={Li, Yanghao and Wu, Chao-Yuan and Fan, Haoqi and Mangalam, Karttikeya and Xiong, Bo and Malik, Jitendra and Feichtenhofer, Christoph}, booktitle={CVPR}, year={2022} } Code adapted from original Apache 2.0 licensed impl at https://github.com/facebookresearch/mvit Original copyright below. Modifications and timm support by / Copyright 2022, Ross Wightman """ # Copyright (c) Meta Platforms, Inc. and affiliates. All Rights Reserved. All Rights Reserved. import operator from collections import OrderedDict from dataclasses import dataclass from functools import partial, reduce from typing import Union, List, Tuple, Optional import torch import torch.utils.checkpoint as checkpoint from torch import nn from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .fx_features import register_notrace_function from .helpers import build_model_with_cfg from .layers import Mlp, DropPath, trunc_normal_tf_, get_norm_layer, to_2tuple from .registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head.fc', 'fixed_input_size': True, **kwargs } default_cfgs = dict( mvitv2_tiny=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_T_in1k.pyth'), mvitv2_small=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_S_in1k.pyth'), mvitv2_base=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in1k.pyth'), mvitv2_large=_cfg(url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in1k.pyth'), mvitv2_base_in21k=_cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_B_in21k.pyth', num_classes=19168), mvitv2_large_in21k=_cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_L_in21k.pyth', num_classes=19168), mvitv2_huge_in21k=_cfg( url='https://dl.fbaipublicfiles.com/mvit/mvitv2_models/MViTv2_H_in21k.pyth', num_classes=19168), mvitv2_small_cls=_cfg(url=''), ) @dataclass class MultiScaleVitCfg: depths: Tuple[int, ...] = (2, 3, 16, 3) embed_dim: Union[int, Tuple[int, ...]] = 96 num_heads: Union[int, Tuple[int, ...]] = 1 mlp_ratio: float = 4. pool_first: bool = False expand_attn: bool = True qkv_bias: bool = True use_cls_token: bool = False use_abs_pos: bool = False residual_pooling: bool = True mode: str = 'conv' kernel_qkv: Tuple[int, int] = (3, 3) stride_q: Optional[Tuple[Tuple[int, int]]] = ((1, 1), (2, 2), (2, 2), (2, 2)) stride_kv: Optional[Tuple[Tuple[int, int]]] = None stride_kv_adaptive: Optional[Tuple[int, int]] = (4, 4) patch_kernel: Tuple[int, int] = (7, 7) patch_stride: Tuple[int, int] = (4, 4) patch_padding: Tuple[int, int] = (3, 3) pool_type: str = 'max' rel_pos_type: str = 'spatial' act_layer: Union[str, Tuple[str, str]] = 'gelu' norm_layer: Union[str, Tuple[str, str]] = 'layernorm' norm_eps: float = 1e-6 def __post_init__(self): num_stages = len(self.depths) if not isinstance(self.embed_dim, (tuple, list)): self.embed_dim = tuple(self.embed_dim * 2 ** i for i in range(num_stages)) assert len(self.embed_dim) == num_stages if not isinstance(self.num_heads, (tuple, list)): self.num_heads = tuple(self.num_heads * 2 ** i for i in range(num_stages)) assert len(self.num_heads) == num_stages if self.stride_kv_adaptive is not None and self.stride_kv is None: _stride_kv = self.stride_kv_adaptive pool_kv_stride = [] for i in range(num_stages): if min(self.stride_q[i]) > 1: _stride_kv = [ max(_stride_kv[d] // self.stride_q[i][d], 1) for d in range(len(_stride_kv)) ] pool_kv_stride.append(tuple(_stride_kv)) self.stride_kv = tuple(pool_kv_stride) model_cfgs = dict( mvitv2_tiny=MultiScaleVitCfg( depths=(1, 2, 5, 2), ), mvitv2_small=MultiScaleVitCfg( depths=(1, 2, 11, 2), ), mvitv2_base=MultiScaleVitCfg( depths=(2, 3, 16, 3), ), mvitv2_large=MultiScaleVitCfg( depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, expand_attn=False, ), mvitv2_base_in21k=MultiScaleVitCfg( depths=(2, 3, 16, 3), ), mvitv2_large_in21k=MultiScaleVitCfg( depths=(2, 6, 36, 4), embed_dim=144, num_heads=2, expand_attn=False, ), mvitv2_small_cls=MultiScaleVitCfg( depths=(1, 2, 11, 2), use_cls_token=True, ), ) def prod(iterable): return reduce(operator.mul, iterable, 1) class PatchEmbed(nn.Module): """ PatchEmbed. """ def __init__( self, dim_in=3, dim_out=768, kernel=(7, 7), stride=(4, 4), padding=(3, 3), ): super().__init__() self.proj = nn.Conv2d( dim_in, dim_out, kernel_size=kernel, stride=stride, padding=padding, ) def forward(self, x) -> Tuple[torch.Tensor, List[int]]: x = self.proj(x) # B C H W -> B HW C return x.flatten(2).transpose(1, 2), x.shape[-2:] @register_notrace_function def reshape_pre_pool( x, feat_size: List[int], has_cls_token: bool = True ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]: H, W = feat_size if has_cls_token: cls_tok, x = x[:, :, :1, :], x[:, :, 1:, :] else: cls_tok = None x = x.reshape(-1, H, W, x.shape[-1]).permute(0, 3, 1, 2).contiguous() return x, cls_tok @register_notrace_function def reshape_post_pool( x, num_heads: int, cls_tok: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, List[int]]: feat_size = [x.shape[2], x.shape[3]] L_pooled = x.shape[2] * x.shape[3] x = x.reshape(-1, num_heads, x.shape[1], L_pooled).transpose(2, 3) if cls_tok is not None: x = torch.cat((cls_tok, x), dim=2) return x, feat_size @register_notrace_function def cal_rel_pos_type( attn: torch.Tensor, q: torch.Tensor, has_cls_token: bool, q_size: List[int], k_size: List[int], rel_pos_h: torch.Tensor, rel_pos_w: torch.Tensor, ): """ Spatial Relative Positional Embeddings. """ sp_idx = 1 if has_cls_token else 0 q_h, q_w = q_size k_h, k_w = k_size # Scale up rel pos if shapes for q and k are different. q_h_ratio = max(k_h / q_h, 1.0) k_h_ratio = max(q_h / k_h, 1.0) dist_h = torch.arange(q_h)[:, None] * q_h_ratio - torch.arange(k_h)[None, :] * k_h_ratio dist_h += (k_h - 1) * k_h_ratio q_w_ratio = max(k_w / q_w, 1.0) k_w_ratio = max(q_w / k_w, 1.0) dist_w = torch.arange(q_w)[:, None] * q_w_ratio - torch.arange(k_w)[None, :] * k_w_ratio dist_w += (k_w - 1) * k_w_ratio Rh = rel_pos_h[dist_h.long()] Rw = rel_pos_w[dist_w.long()] B, n_head, q_N, dim = q.shape r_q = q[:, :, sp_idx:].reshape(B, n_head, q_h, q_w, dim) rel_h = torch.einsum("byhwc,hkc->byhwk", r_q, Rh) rel_w = torch.einsum("byhwc,wkc->byhwk", r_q, Rw) attn[:, :, sp_idx:, sp_idx:] = ( attn[:, :, sp_idx:, sp_idx:].view(B, -1, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, :, None] + rel_w[:, :, :, :, None, :] ).view(B, -1, q_h * q_w, k_h * k_w) return attn class MultiScaleAttentionPoolFirst(nn.Module): def __init__( self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, ): super().__init__() self.num_heads = num_heads self.dim_out = dim_out self.head_dim = dim_out // num_heads self.scale = self.head_dim ** -0.5 self.has_cls_token = has_cls_token padding_q = tuple([int(q // 2) for q in kernel_q]) padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) self.q = nn.Linear(dim, dim_out, bias=qkv_bias) self.k = nn.Linear(dim, dim_out, bias=qkv_bias) self.v = nn.Linear(dim, dim_out, bias=qkv_bias) self.proj = nn.Linear(dim_out, dim_out) # Skip pooling with kernel and stride size of (1, 1, 1). if prod(kernel_q) == 1 and prod(stride_q) == 1: kernel_q = None if prod(kernel_kv) == 1 and prod(stride_kv) == 1: kernel_kv = None self.mode = mode self.unshared = mode == 'conv_unshared' self.pool_q, self.pool_k, self.pool_v = None, None, None self.norm_q, self.norm_k, self.norm_v = None, None, None if mode in ("avg", "max"): pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d if kernel_q: self.pool_q = pool_op(kernel_q, stride_q, padding_q) if kernel_kv: self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) elif mode == "conv" or mode == "conv_unshared": dim_conv = dim // num_heads if mode == "conv" else dim if kernel_q: self.pool_q = nn.Conv2d( dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False, ) self.norm_q = norm_layer(dim_conv) if kernel_kv: self.pool_k = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_k = norm_layer(dim_conv) self.pool_v = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_v = norm_layer(dim_conv) else: raise NotImplementedError(f"Unsupported model {mode}") # relative pos embedding self.rel_pos_type = rel_pos_type if self.rel_pos_type == 'spatial': assert feat_size[0] == feat_size[1] size = feat_size[0] q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size rel_sp_dim = 2 * max(q_size, kv_size) - 1 self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) trunc_normal_tf_(self.rel_pos_h, std=0.02) trunc_normal_tf_(self.rel_pos_w, std=0.02) self.residual_pooling = residual_pooling def forward(self, x, feat_size: List[int]): B, N, _ = x.shape fold_dim = 1 if self.unshared else self.num_heads x = x.reshape(B, N, fold_dim, -1).permute(0, 2, 1, 3) q = k = v = x if self.pool_q is not None: q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) q = self.pool_q(q) q, q_size = reshape_post_pool(q, self.num_heads, q_tok) else: q_size = feat_size if self.norm_q is not None: q = self.norm_q(q) if self.pool_k is not None: k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) k = self.pool_k(k) k, k_size = reshape_post_pool(k, self.num_heads, k_tok) else: k_size = feat_size if self.norm_k is not None: k = self.norm_k(k) if self.pool_v is not None: v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) v = self.pool_v(v) v, v_size = reshape_post_pool(v, self.num_heads, v_tok) else: v_size = feat_size if self.norm_v is not None: v = self.norm_v(v) q_N = q_size[0] * q_size[1] + int(self.has_cls_token) q = q.permute(0, 2, 1, 3).reshape(B, q_N, -1) q = self.q(q).reshape(B, q_N, self.num_heads, -1).permute(0, 2, 1, 3) k_N = k_size[0] * k_size[1] + int(self.has_cls_token) k = k.permute(0, 2, 1, 3).reshape(B, k_N, -1) k = self.k(k).reshape(B, k_N, self.num_heads, -1).permute(0, 2, 1, 3) v_N = v_size[0] * v_size[1] + int(self.has_cls_token) v = v.permute(0, 2, 1, 3).reshape(B, v_N, -1) v = self.v(v).reshape(B, v_N, self.num_heads, -1).permute(0, 2, 1, 3) attn = (q * self.scale) @ k.transpose(-2, -1) if self.rel_pos_type == 'spatial': attn = cal_rel_pos_type( attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w, ) attn = attn.softmax(dim=-1) x = attn @ v if self.residual_pooling: x = x + q x = x.transpose(1, 2).reshape(B, -1, self.dim_out) x = self.proj(x) return x, q_size class MultiScaleAttention(nn.Module): def __init__( self, dim, dim_out, feat_size, num_heads=8, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, ): super().__init__() self.num_heads = num_heads self.dim_out = dim_out self.head_dim = dim_out // num_heads self.scale = self.head_dim ** -0.5 self.has_cls_token = has_cls_token padding_q = tuple([int(q // 2) for q in kernel_q]) padding_kv = tuple([int(kv // 2) for kv in kernel_kv]) self.qkv = nn.Linear(dim, dim_out * 3, bias=qkv_bias) self.proj = nn.Linear(dim_out, dim_out) # Skip pooling with kernel and stride size of (1, 1, 1). if prod(kernel_q) == 1 and prod(stride_q) == 1: kernel_q = None if prod(kernel_kv) == 1 and prod(stride_kv) == 1: kernel_kv = None self.mode = mode self.unshared = mode == 'conv_unshared' self.norm_q, self.norm_k, self.norm_v = None, None, None self.pool_q, self.pool_k, self.pool_v = None, None, None if mode in ("avg", "max"): pool_op = nn.MaxPool2d if mode == "max" else nn.AvgPool2d if kernel_q: self.pool_q = pool_op(kernel_q, stride_q, padding_q) if kernel_kv: self.pool_k = pool_op(kernel_kv, stride_kv, padding_kv) self.pool_v = pool_op(kernel_kv, stride_kv, padding_kv) elif mode == "conv" or mode == "conv_unshared": dim_conv = dim_out // num_heads if mode == "conv" else dim_out if kernel_q: self.pool_q = nn.Conv2d( dim_conv, dim_conv, kernel_q, stride=stride_q, padding=padding_q, groups=dim_conv, bias=False, ) self.norm_q = norm_layer(dim_conv) if kernel_kv: self.pool_k = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_k = norm_layer(dim_conv) self.pool_v = nn.Conv2d( dim_conv, dim_conv, kernel_kv, stride=stride_kv, padding=padding_kv, groups=dim_conv, bias=False, ) self.norm_v = norm_layer(dim_conv) else: raise NotImplementedError(f"Unsupported model {mode}") # relative pos embedding self.rel_pos_type = rel_pos_type if self.rel_pos_type == 'spatial': assert feat_size[0] == feat_size[1] size = feat_size[0] q_size = size // stride_q[1] if len(stride_q) > 0 else size kv_size = size // stride_kv[1] if len(stride_kv) > 0 else size rel_sp_dim = 2 * max(q_size, kv_size) - 1 self.rel_pos_h = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) self.rel_pos_w = nn.Parameter(torch.zeros(rel_sp_dim, self.head_dim)) trunc_normal_tf_(self.rel_pos_h, std=0.02) trunc_normal_tf_(self.rel_pos_w, std=0.02) self.residual_pooling = residual_pooling def forward(self, x, feat_size: List[int]): B, N, _ = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv.unbind(dim=0) if self.pool_q is not None: q, q_tok = reshape_pre_pool(q, feat_size, self.has_cls_token) q = self.pool_q(q) q, q_size = reshape_post_pool(q, self.num_heads, q_tok) else: q_size = feat_size if self.norm_q is not None: q = self.norm_q(q) if self.pool_k is not None: k, k_tok = reshape_pre_pool(k, feat_size, self.has_cls_token) k = self.pool_k(k) k, k_size = reshape_post_pool(k, self.num_heads, k_tok) else: k_size = feat_size if self.norm_k is not None: k = self.norm_k(k) if self.pool_v is not None: v, v_tok = reshape_pre_pool(v, feat_size, self.has_cls_token) v = self.pool_v(v) v, _ = reshape_post_pool(v, self.num_heads, v_tok) if self.norm_v is not None: v = self.norm_v(v) attn = (q * self.scale) @ k.transpose(-2, -1) if self.rel_pos_type == 'spatial': attn = cal_rel_pos_type( attn, q, self.has_cls_token, q_size, k_size, self.rel_pos_h, self.rel_pos_w, ) attn = attn.softmax(dim=-1) x = attn @ v if self.residual_pooling: x = x + q x = x.transpose(1, 2).reshape(B, -1, self.dim_out) x = self.proj(x) return x, q_size class MultiScaleBlock(nn.Module): def __init__( self, dim, dim_out, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, drop_path=0.0, norm_layer=nn.LayerNorm, kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), mode="conv", has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, ): super().__init__() proj_needed = dim != dim_out self.dim = dim self.dim_out = dim_out self.has_cls_token = has_cls_token self.norm1 = norm_layer(dim) self.shortcut_proj_attn = nn.Linear(dim, dim_out) if proj_needed and expand_attn else None if stride_q and prod(stride_q) > 1: kernel_skip = [s + 1 if s > 1 else s for s in stride_q] stride_skip = stride_q padding_skip = [int(skip // 2) for skip in kernel_skip] self.shortcut_pool_attn = nn.MaxPool2d(kernel_skip, stride_skip, padding_skip) else: self.shortcut_pool_attn = None att_dim = dim_out if expand_attn else dim attn_layer = MultiScaleAttentionPoolFirst if pool_first else MultiScaleAttention self.attn = attn_layer( dim, att_dim, num_heads=num_heads, feat_size=feat_size, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q, stride_kv=stride_kv, norm_layer=norm_layer, has_cls_token=has_cls_token, mode=mode, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, ) self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(att_dim) mlp_dim_out = dim_out self.shortcut_proj_mlp = nn.Linear(dim, dim_out) if proj_needed and not expand_attn else None self.mlp = Mlp( in_features=att_dim, hidden_features=int(att_dim * mlp_ratio), out_features=mlp_dim_out, ) self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() def _shortcut_pool(self, x, feat_size: List[int]): if self.shortcut_pool_attn is None: return x if self.has_cls_token: cls_tok, x = x[:, :1, :], x[:, 1:, :] else: cls_tok = None B, L, C = x.shape H, W = feat_size x = x.reshape(B, H, W, C).permute(0, 3, 1, 2).contiguous() x = self.shortcut_pool_attn(x) x = x.reshape(B, C, -1).transpose(1, 2) if cls_tok is not None: x = torch.cat((cls_tok, x), dim=1) return x def forward(self, x, feat_size: List[int]): x_norm = self.norm1(x) # NOTE as per the original impl, this seems odd, but shortcut uses un-normalized input if no proj x_shortcut = x if self.shortcut_proj_attn is None else self.shortcut_proj_attn(x_norm) x_shortcut = self._shortcut_pool(x_shortcut, feat_size) x, feat_size_new = self.attn(x_norm, feat_size) x = x_shortcut + self.drop_path1(x) x_norm = self.norm2(x) x_shortcut = x if self.shortcut_proj_mlp is None else self.shortcut_proj_mlp(x_norm) x = x_shortcut + self.drop_path2(self.mlp(x_norm)) return x, feat_size_new class MultiScaleVitStage(nn.Module): def __init__( self, dim, dim_out, depth, num_heads, feat_size, mlp_ratio=4.0, qkv_bias=True, mode="conv", kernel_q=(1, 1), kernel_kv=(1, 1), stride_q=(1, 1), stride_kv=(1, 1), has_cls_token=True, expand_attn=False, pool_first=False, rel_pos_type='spatial', residual_pooling=True, norm_layer=nn.LayerNorm, drop_path=0.0, ): super().__init__() self.grad_checkpointing = False self.blocks = nn.ModuleList() if expand_attn: out_dims = (dim_out,) * depth else: out_dims = (dim,) * (depth - 1) + (dim_out,) for i in range(depth): attention_block = MultiScaleBlock( dim=dim, dim_out=out_dims[i], num_heads=num_heads, feat_size=feat_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, kernel_q=kernel_q, kernel_kv=kernel_kv, stride_q=stride_q if i == 0 else (1, 1), stride_kv=stride_kv, mode=mode, has_cls_token=has_cls_token, pool_first=pool_first, rel_pos_type=rel_pos_type, residual_pooling=residual_pooling, expand_attn=expand_attn, norm_layer=norm_layer, drop_path=drop_path[i] if isinstance(drop_path, (list, tuple)) else drop_path, ) dim = out_dims[i] self.blocks.append(attention_block) if i == 0: feat_size = tuple([size // stride for size, stride in zip(feat_size, stride_q)]) self.feat_size = feat_size def forward(self, x, feat_size: List[int]): for blk in self.blocks: if self.grad_checkpointing and not torch.jit.is_scripting(): x, feat_size = checkpoint.checkpoint(blk, x, feat_size) else: x, feat_size = blk(x, feat_size) return x, feat_size class MultiScaleVit(nn.Module): """ Improved Multiscale Vision Transformers for Classification and Detection Yanghao Li*, Chao-Yuan Wu*, Haoqi Fan, Karttikeya Mangalam, Bo Xiong, Jitendra Malik, Christoph Feichtenhofer* https://arxiv.org/abs/2112.01526 Multiscale Vision Transformers Haoqi Fan*, Bo Xiong*, Karttikeya Mangalam*, Yanghao Li*, Zhicheng Yan, Jitendra Malik, Christoph Feichtenhofer* https://arxiv.org/abs/2104.11227 """ def __init__( self, cfg: MultiScaleVitCfg, img_size: Tuple[int, int] = (224, 224), in_chans: int = 3, global_pool: str = 'avg', num_classes: int = 1000, drop_path_rate: float = 0., drop_rate: float = 0., ): super().__init__() img_size = to_2tuple(img_size) norm_layer = partial(get_norm_layer(cfg.norm_layer), eps=cfg.norm_eps) self.num_classes = num_classes self.drop_rate = drop_rate self.global_pool = global_pool self.depths = tuple(cfg.depths) self.expand_attn = cfg.expand_attn embed_dim = cfg.embed_dim[0] self.patch_embed = PatchEmbed( dim_in=in_chans, dim_out=embed_dim, kernel=cfg.patch_kernel, stride=cfg.patch_stride, padding=cfg.patch_padding, ) patch_dims = (img_size[0] // cfg.patch_stride[0], img_size[1] // cfg.patch_stride[1]) num_patches = prod(patch_dims) if cfg.use_cls_token: self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.num_prefix_tokens = 1 pos_embed_dim = num_patches + 1 else: self.num_prefix_tokens = 0 self.cls_token = None pos_embed_dim = num_patches if cfg.use_abs_pos: self.pos_embed = nn.Parameter(torch.zeros(1, pos_embed_dim, embed_dim)) else: self.pos_embed = None num_stages = len(cfg.embed_dim) feat_size = patch_dims dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.depths)).split(cfg.depths)] self.stages = nn.ModuleList() for i in range(num_stages): if cfg.expand_attn: dim_out = cfg.embed_dim[i] else: dim_out = cfg.embed_dim[min(i + 1, num_stages - 1)] stage = MultiScaleVitStage( dim=embed_dim, dim_out=dim_out, depth=cfg.depths[i], num_heads=cfg.num_heads[i], feat_size=feat_size, mlp_ratio=cfg.mlp_ratio, qkv_bias=cfg.qkv_bias, mode=cfg.mode, pool_first=cfg.pool_first, expand_attn=cfg.expand_attn, kernel_q=cfg.kernel_qkv, kernel_kv=cfg.kernel_qkv, stride_q=cfg.stride_q[i], stride_kv=cfg.stride_kv[i], has_cls_token=cfg.use_cls_token, rel_pos_type=cfg.rel_pos_type, residual_pooling=cfg.residual_pooling, norm_layer=norm_layer, drop_path=dpr[i], ) embed_dim = dim_out feat_size = stage.feat_size self.stages.append(stage) self.num_features = embed_dim self.norm = norm_layer(embed_dim) self.head = nn.Sequential(OrderedDict([ ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) if self.pos_embed is not None: trunc_normal_tf_(self.pos_embed, std=0.02) if self.cls_token is not None: trunc_normal_tf_(self.cls_token, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_tf_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0.0) @torch.jit.ignore def no_weight_decay(self): return {k for k, _ in self.named_parameters() if any(n in k for n in ["pos_embed", "rel_pos_h", "rel_pos_w", "cls_token"])} @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^patch_embed', # stem and embed blocks=[(r'^stages\.(\d+)', None), (r'^norm', (99999,))] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): for s in self.stages: s.grad_checkpointing = enable @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes if global_pool is not None: self.global_pool = global_pool self.head = nn.Sequential(OrderedDict([ ('drop', nn.Dropout(self.drop_rate)), ('fc', nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()) ])) def forward_features(self, x): x, feat_size = self.patch_embed(x) B, N, C = x.shape if self.cls_token is not None: cls_tokens = self.cls_token.expand(B, -1, -1) x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed for stage in self.stages: x, feat_size = stage(x, feat_size) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False): if self.global_pool: if self.global_pool == 'avg': x = x[:, self.num_prefix_tokens:].mean(1) else: x = x[:, 0] return x if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): if 'stages.0.blocks.0.norm1.weight' in state_dict: return state_dict import re if 'model_state' in state_dict: state_dict = state_dict['model_state'] depths = getattr(model, 'depths', None) expand_attn = getattr(model, 'expand_attn', True) assert depths is not None, 'model requires depth attribute to remap checkpoints' depth_map = {} block_idx = 0 for stage_idx, d in enumerate(depths): depth_map.update({i: (stage_idx, i - block_idx) for i in range(block_idx, block_idx + d)}) block_idx += d out_dict = {} for k, v in state_dict.items(): k = re.sub( r'blocks\.(\d+)', lambda x: f'stages.{depth_map[int(x.group(1))][0]}.blocks.{depth_map[int(x.group(1))][1]}', k) if expand_attn: k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_attn', k) else: k = re.sub(r'stages\.(\d+).blocks\.(\d+).proj', f'stages.\\1.blocks.\\2.shortcut_proj_mlp', k) if 'head' in k: k = k.replace('head.projection', 'head.fc') out_dict[k] = v # for k, v in state_dict.items(): # if model.pos_embed is not None and k == 'pos_embed' and v.shape[1] != model.pos_embed.shape[1]: # # To resize pos embedding when using model at different size from pretrained weights # v = resize_pos_embed( # v, # model.pos_embed, # 0 if getattr(model, 'no_embed_class') else getattr(model, 'num_prefix_tokens', 1), # model.patch_embed.grid_size # ) return out_dict def _create_mvitv2(variant, cfg_variant=None, pretrained=False, **kwargs): return build_model_with_cfg( MultiScaleVit, variant, pretrained, model_cfg=model_cfgs[variant] if not cfg_variant else model_cfgs[cfg_variant], pretrained_filter_fn=checkpoint_filter_fn, feature_cfg=dict(flatten_sequential=True), **kwargs) @register_model def mvitv2_tiny(pretrained=False, **kwargs): return _create_mvitv2('mvitv2_tiny', pretrained=pretrained, **kwargs) @register_model def mvitv2_small(pretrained=False, **kwargs): return _create_mvitv2('mvitv2_small', pretrained=pretrained, **kwargs) @register_model def mvitv2_base(pretrained=False, **kwargs): return _create_mvitv2('mvitv2_base', pretrained=pretrained, **kwargs) @register_model def mvitv2_large(pretrained=False, **kwargs): return _create_mvitv2('mvitv2_large', pretrained=pretrained, **kwargs) # @register_model # def mvitv2_base_in21k(pretrained=False, **kwargs): # return _create_mvitv2('mvitv2_base_in21k', pretrained=pretrained, **kwargs) # # # @register_model # def mvitv2_large_in21k(pretrained=False, **kwargs): # return _create_mvitv2('mvitv2_large_in21k', pretrained=pretrained, **kwargs) # # # @register_model # def mvitv2_huge_in21k(pretrained=False, **kwargs): # return _create_mvitv2('mvitv2_huge_in21k', pretrained=pretrained, **kwargs) @register_model def mvitv2_small_cls(pretrained=False, **kwargs): return _create_mvitv2('mvitv2_small_cls', pretrained=pretrained, **kwargs)