""" Pooling-based Vision Transformer (PiT) in PyTorch A PyTorch implement of Pooling-based Vision Transformers as described in 'Rethinking Spatial Dimensions of Vision Transformers' - https://arxiv.org/abs/2103.16302 This code was adapted from the original version at https://github.com/naver-ai/pit, original copyright below. Modifications for timm by / Copyright 2020 Ross Wightman """ # PiT # Copyright 2021-present NAVER Corp. # Apache License v2.0 import math import re from copy import deepcopy from functools import partial from typing import Tuple import torch from torch import nn from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from .helpers import build_model_with_cfg from .layers import trunc_normal_, to_2tuple from .registry import register_model from .vision_transformer import Block def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.conv', 'classifier': 'head', **kwargs } default_cfgs = { # deit models (FB weights) 'pit_ti_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_ti_730.pth'), 'pit_xs_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_xs_781.pth'), 'pit_s_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_s_809.pth'), 'pit_b_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_b_820.pth'), 'pit_ti_distilled_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_ti_distill_746.pth', classifier=('head', 'head_dist')), 'pit_xs_distilled_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_xs_distill_791.pth', classifier=('head', 'head_dist')), 'pit_s_distilled_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_s_distill_819.pth', classifier=('head', 'head_dist')), 'pit_b_distilled_224': _cfg( url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-pit-weights/pit_b_distill_840.pth', classifier=('head', 'head_dist')), } class SequentialTuple(nn.Sequential): """ This module exists to work around torchscript typing issues list -> list""" def __init__(self, *args): super(SequentialTuple, self).__init__(*args) def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: for module in self: x = module(x) return x class Transformer(nn.Module): def __init__( self, base_dim, depth, heads, mlp_ratio, pool=None, drop_rate=.0, attn_drop_rate=.0, drop_path_prob=None): super(Transformer, self).__init__() self.layers = nn.ModuleList([]) embed_dim = base_dim * heads self.blocks = nn.Sequential(*[ Block( dim=embed_dim, num_heads=heads, mlp_ratio=mlp_ratio, qkv_bias=True, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=drop_path_prob[i], norm_layer=partial(nn.LayerNorm, eps=1e-6) ) for i in range(depth)]) self.pool = pool def forward(self, x: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]: x, cls_tokens = x B, C, H, W = x.shape token_length = cls_tokens.shape[1] x = x.flatten(2).transpose(1, 2) x = torch.cat((cls_tokens, x), dim=1) x = self.blocks(x) cls_tokens = x[:, :token_length] x = x[:, token_length:] x = x.transpose(1, 2).reshape(B, C, H, W) if self.pool is not None: x, cls_tokens = self.pool(x, cls_tokens) return x, cls_tokens class ConvHeadPooling(nn.Module): def __init__(self, in_feature, out_feature, stride, padding_mode='zeros'): super(ConvHeadPooling, self).__init__() self.conv = nn.Conv2d( in_feature, out_feature, kernel_size=stride + 1, padding=stride // 2, stride=stride, padding_mode=padding_mode, groups=in_feature) self.fc = nn.Linear(in_feature, out_feature) def forward(self, x, cls_token) -> Tuple[torch.Tensor, torch.Tensor]: x = self.conv(x) cls_token = self.fc(cls_token) return x, cls_token class ConvEmbedding(nn.Module): def __init__(self, in_channels, out_channels, patch_size, stride, padding): super(ConvEmbedding, self).__init__() self.conv = nn.Conv2d( in_channels, out_channels, kernel_size=patch_size, stride=stride, padding=padding, bias=True) def forward(self, x): x = self.conv(x) return x class PoolingVisionTransformer(nn.Module): """ Pooling-based Vision Transformer A PyTorch implement of 'Rethinking Spatial Dimensions of Vision Transformers' - https://arxiv.org/abs/2103.16302 """ def __init__( self, img_size, patch_size, stride, base_dims, depth, heads, mlp_ratio, num_classes=1000, in_chans=3, global_pool='token', distilled=False, attn_drop_rate=.0, drop_rate=.0, drop_path_rate=.0): super(PoolingVisionTransformer, self).__init__() assert global_pool in ('token',) padding = 0 img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) height = math.floor((img_size[0] + 2 * padding - patch_size[0]) / stride + 1) width = math.floor((img_size[1] + 2 * padding - patch_size[1]) / stride + 1) self.base_dims = base_dims self.heads = heads self.num_classes = num_classes self.global_pool = global_pool self.num_tokens = 2 if distilled else 1 self.patch_size = patch_size self.pos_embed = nn.Parameter(torch.randn(1, base_dims[0] * heads[0], height, width)) self.patch_embed = ConvEmbedding(in_chans, base_dims[0] * heads[0], patch_size, stride, padding) self.cls_token = nn.Parameter(torch.randn(1, self.num_tokens, base_dims[0] * heads[0])) self.pos_drop = nn.Dropout(p=drop_rate) transformers = [] # stochastic depth decay rule dpr = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depth)).split(depth)] for stage in range(len(depth)): pool = None if stage < len(heads) - 1: pool = ConvHeadPooling( base_dims[stage] * heads[stage], base_dims[stage + 1] * heads[stage + 1], stride=2) transformers += [Transformer( base_dims[stage], depth[stage], heads[stage], mlp_ratio, pool=pool, drop_rate=drop_rate, attn_drop_rate=attn_drop_rate, drop_path_prob=dpr[stage]) ] self.transformers = SequentialTuple(*transformers) self.norm = nn.LayerNorm(base_dims[-1] * heads[-1], eps=1e-6) self.num_features = self.embed_dim = base_dims[-1] * heads[-1] # Classifier head self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.head_dist = None if distilled: self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() self.distilled_training = False # must set this True to train w/ distillation token trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} @torch.jit.ignore def set_distilled_training(self, enable=True): self.distilled_training = enable @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' def get_classifier(self): if self.head_dist is not None: return self.head, self.head_dist else: return self.head def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.head_dist is not None: self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): x = self.patch_embed(x) x = self.pos_drop(x + self.pos_embed) cls_tokens = self.cls_token.expand(x.shape[0], -1, -1) x, cls_tokens = self.transformers((x, cls_tokens)) cls_tokens = self.norm(cls_tokens) return cls_tokens def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: if self.head_dist is not None: assert self.global_pool == 'token' x, x_dist = x[:, 0], x[:, 1] if not pre_logits: x = self.head(x) x_dist = self.head_dist(x_dist) if self.distilled_training and self.training and not torch.jit.is_scripting(): # only return separate classification predictions when training in distilled mode return x, x_dist else: # during standard train / finetune, inference average the classifier predictions return (x + x_dist) / 2 else: if self.global_pool == 'token': x = x[:, 0] if not pre_logits: x = self.head(x) return x def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def checkpoint_filter_fn(state_dict, model): """ preprocess checkpoints """ out_dict = {} p_blocks = re.compile(r'pools\.(\d)\.') for k, v in state_dict.items(): # FIXME need to update resize for PiT impl # if k == 'pos_embed' and v.shape != model.pos_embed.shape: # # To resize pos embedding when using model at different size from pretrained weights # v = resize_pos_embed(v, model.pos_embed) k = p_blocks.sub(lambda exp: f'transformers.{int(exp.group(1))}.pool.', k) out_dict[k] = v return out_dict def _create_pit(variant, pretrained=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model = build_model_with_cfg( PoolingVisionTransformer, variant, pretrained, pretrained_filter_fn=checkpoint_filter_fn, **kwargs) return model @register_model def pit_b_224(pretrained, **kwargs): model_kwargs = dict( patch_size=14, stride=7, base_dims=[64, 64, 64], depth=[3, 6, 4], heads=[4, 8, 16], mlp_ratio=4, **kwargs ) return _create_pit('pit_b_224', pretrained, **model_kwargs) @register_model def pit_s_224(pretrained, **kwargs): model_kwargs = dict( patch_size=16, stride=8, base_dims=[48, 48, 48], depth=[2, 6, 4], heads=[3, 6, 12], mlp_ratio=4, **kwargs ) return _create_pit('pit_s_224', pretrained, **model_kwargs) @register_model def pit_xs_224(pretrained, **kwargs): model_kwargs = dict( patch_size=16, stride=8, base_dims=[48, 48, 48], depth=[2, 6, 4], heads=[2, 4, 8], mlp_ratio=4, **kwargs ) return _create_pit('pit_xs_224', pretrained, **model_kwargs) @register_model def pit_ti_224(pretrained, **kwargs): model_kwargs = dict( patch_size=16, stride=8, base_dims=[32, 32, 32], depth=[2, 6, 4], heads=[2, 4, 8], mlp_ratio=4, **kwargs ) return _create_pit('pit_ti_224', pretrained, **model_kwargs) @register_model def pit_b_distilled_224(pretrained, **kwargs): model_kwargs = dict( patch_size=14, stride=7, base_dims=[64, 64, 64], depth=[3, 6, 4], heads=[4, 8, 16], mlp_ratio=4, distilled=True, **kwargs ) return _create_pit('pit_b_distilled_224', pretrained, **model_kwargs) @register_model def pit_s_distilled_224(pretrained, **kwargs): model_kwargs = dict( patch_size=16, stride=8, base_dims=[48, 48, 48], depth=[2, 6, 4], heads=[3, 6, 12], mlp_ratio=4, distilled=True, **kwargs ) return _create_pit('pit_s_distilled_224', pretrained, **model_kwargs) @register_model def pit_xs_distilled_224(pretrained, **kwargs): model_kwargs = dict( patch_size=16, stride=8, base_dims=[48, 48, 48], depth=[2, 6, 4], heads=[2, 4, 8], mlp_ratio=4, distilled=True, **kwargs ) return _create_pit('pit_xs_distilled_224', pretrained, **model_kwargs) @register_model def pit_ti_distilled_224(pretrained, **kwargs): model_kwargs = dict( patch_size=16, stride=8, base_dims=[32, 32, 32], depth=[2, 6, 4], heads=[2, 4, 8], mlp_ratio=4, distilled=True, **kwargs ) return _create_pit('pit_ti_distilled_224', pretrained, **model_kwargs)