import torch from custom_manopth import rodrigues_layer def th_posemap_axisang(pose_vectors): rot_nb = int(pose_vectors.shape[1] / 3) pose_vec_reshaped = pose_vectors.contiguous().view(-1, 3) rot_mats = rodrigues_layer.batch_rodrigues(pose_vec_reshaped) rot_mats = rot_mats.view(pose_vectors.shape[0], rot_nb * 9) pose_maps = subtract_flat_id(rot_mats) return pose_maps, rot_mats def th_with_zeros(tensor): batch_size = tensor.shape[0] padding = torch.tensor([0.0, 0.0, 0.0, 1.0], device = tensor.device, dtype = tensor.dtype) padding.requires_grad = False concat_list = [tensor, padding.view(1, 1, 4).repeat(batch_size, 1, 1)] cat_res = torch.cat(concat_list, 1) return cat_res def th_pack(tensor): batch_size = tensor.shape[0] padding = tensor.new_zeros((batch_size, 4, 3)) padding.requires_grad = False pack_list = [padding, tensor] pack_res = torch.cat(pack_list, 2) return pack_res def subtract_flat_id(rot_mats): # Subtracts identity as a flattened tensor rot_nb = int(rot_mats.shape[1] / 9) id_flat = torch.eye( 3, dtype=rot_mats.dtype, device=rot_mats.device).view(1, 9).repeat( rot_mats.shape[0], rot_nb) # id_flat.requires_grad = False results = rot_mats - id_flat return results def make_list(tensor): # type: (List[int]) -> List[int] return tensor