""" DeiT - Data-efficient Image Transformers DeiT model defs and weights from https://github.com/facebookresearch/deit, original copyright below paper: `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 paper: `DeiT III: Revenge of the ViT` - https://arxiv.org/abs/2204.07118 Modifications copyright 2021, Ross Wightman """ # Copyright (c) 2015-present, Facebook, Inc. # All rights reserved. from functools import partial import torch from torch import nn as nn from custom_timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from custom_timm.models.vision_transformer import VisionTransformer, trunc_normal_, checkpoint_filter_fn from .helpers import build_model_with_cfg, checkpoint_seq from .registry import register_model def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None, 'crop_pct': .9, 'interpolation': 'bicubic', 'fixed_input_size': True, 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'patch_embed.proj', 'classifier': 'head', **kwargs } default_cfgs = { # deit models (FB weights) 'deit_tiny_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_patch16_224-a1311bcf.pth'), 'deit_small_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_small_patch16_224-cd65a155.pth'), 'deit_base_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_224-b5f2ef4d.pth'), 'deit_base_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_patch16_384-8de9b5d1.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit_tiny_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_tiny_distilled_patch16_224-b40b3cf7.pth', classifier=('head', 'head_dist')), 'deit_small_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_small_distilled_patch16_224-649709d9.pth', classifier=('head', 'head_dist')), 'deit_base_distilled_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_224-df68dfff.pth', classifier=('head', 'head_dist')), 'deit_base_distilled_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_base_distilled_patch16_384-d0272ac0.pth', input_size=(3, 384, 384), crop_pct=1.0, classifier=('head', 'head_dist')), 'deit3_small_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_1k.pth'), 'deit3_small_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_medium_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_1k.pth'), 'deit3_base_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_1k.pth'), 'deit3_base_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_large_patch16_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_1k.pth'), 'deit3_large_patch16_384': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_1k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_huge_patch14_224': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_1k.pth'), 'deit3_small_patch16_224_in21ft1k': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_small_224_21k.pth', crop_pct=1.0), 'deit3_small_patch16_384_in21ft1k': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_small_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_medium_patch16_224_in21ft1k': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_medium_224_21k.pth', crop_pct=1.0), 'deit3_base_patch16_224_in21ft1k': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_base_224_21k.pth', crop_pct=1.0), 'deit3_base_patch16_384_in21ft1k': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_base_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_large_patch16_224_in21ft1k': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_large_224_21k.pth', crop_pct=1.0), 'deit3_large_patch16_384_in21ft1k': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_large_384_21k.pth', input_size=(3, 384, 384), crop_pct=1.0), 'deit3_huge_patch14_224_in21ft1k': _cfg( url='https://dl.fbaipublicfiles.com/deit/deit_3_huge_224_21k_v1.pth', crop_pct=1.0), } class VisionTransformerDistilled(VisionTransformer): """ Vision Transformer w/ Distillation Token and Head Distillation token & head support for `DeiT: Data-efficient Image Transformers` - https://arxiv.org/abs/2012.12877 """ def __init__(self, *args, **kwargs): weight_init = kwargs.pop('weight_init', '') super().__init__(*args, **kwargs, weight_init='skip') assert self.global_pool in ('token',) self.num_prefix_tokens = 2 self.dist_token = nn.Parameter(torch.zeros(1, 1, self.embed_dim)) self.pos_embed = nn.Parameter( torch.zeros(1, self.patch_embed.num_patches + self.num_prefix_tokens, self.embed_dim)) self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if self.num_classes > 0 else nn.Identity() self.distilled_training = False # must set this True to train w/ distillation token self.init_weights(weight_init) def init_weights(self, mode=''): trunc_normal_(self.dist_token, std=.02) super().init_weights(mode=mode) @torch.jit.ignore def group_matcher(self, coarse=False): return dict( stem=r'^cls_token|pos_embed|patch_embed|dist_token', blocks=[ (r'^blocks\.(\d+)', None), (r'^norm', (99999,))] # final norm w/ last block ) @torch.jit.ignore def get_classifier(self): return self.head, self.head_dist def reset_classifier(self, num_classes, global_pool=None): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() @torch.jit.ignore def set_distilled_training(self, enable=True): self.distilled_training = enable def forward_features(self, x) -> torch.Tensor: x = self.patch_embed(x) x = torch.cat(( self.cls_token.expand(x.shape[0], -1, -1), self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) x = self.pos_drop(x + self.pos_embed) if self.grad_checkpointing and not torch.jit.is_scripting(): x = checkpoint_seq(self.blocks, x) else: x = self.blocks(x) x = self.norm(x) return x def forward_head(self, x, pre_logits: bool = False) -> torch.Tensor: if pre_logits: return (x[:, 0] + x[:, 1]) / 2 x, x_dist = self.head(x[:, 0]), self.head_dist(x[:, 1]) if self.distilled_training and self.training and not torch.jit.is_scripting(): # only return separate classification predictions when training in distilled mode return x, x_dist else: # during standard train / finetune, inference average the classifier predictions return (x + x_dist) / 2 def _create_deit(variant, pretrained=False, distilled=False, **kwargs): if kwargs.get('features_only', None): raise RuntimeError('features_only not implemented for Vision Transformer models.') model_cls = VisionTransformerDistilled if distilled else VisionTransformer model = build_model_with_cfg( model_cls, variant, pretrained, pretrained_filter_fn=partial(checkpoint_filter_fn, adapt_layer_scale=True), **kwargs) return model @register_model def deit_tiny_patch16_224(pretrained=False, **kwargs): """ DeiT-tiny model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) model = _create_deit('deit_tiny_patch16_224', pretrained=pretrained, **model_kwargs) return model @register_model def deit_small_patch16_224(pretrained=False, **kwargs): """ DeiT-small model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) model = _create_deit('deit_small_patch16_224', pretrained=pretrained, **model_kwargs) return model @register_model def deit_base_patch16_224(pretrained=False, **kwargs): """ DeiT base model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_deit('deit_base_patch16_224', pretrained=pretrained, **model_kwargs) return model @register_model def deit_base_patch16_384(pretrained=False, **kwargs): """ DeiT base model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_deit('deit_base_patch16_384', pretrained=pretrained, **model_kwargs) return model @register_model def deit_tiny_distilled_patch16_224(pretrained=False, **kwargs): """ DeiT-tiny distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=192, depth=12, num_heads=3, **kwargs) model = _create_deit( 'deit_tiny_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) return model @register_model def deit_small_distilled_patch16_224(pretrained=False, **kwargs): """ DeiT-small distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=6, **kwargs) model = _create_deit( 'deit_small_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) return model @register_model def deit_base_distilled_patch16_224(pretrained=False, **kwargs): """ DeiT-base distilled model @ 224x224 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_deit( 'deit_base_distilled_patch16_224', pretrained=pretrained, distilled=True, **model_kwargs) return model @register_model def deit_base_distilled_patch16_384(pretrained=False, **kwargs): """ DeiT-base distilled model @ 384x384 from paper (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict(patch_size=16, embed_dim=768, depth=12, num_heads=12, **kwargs) model = _create_deit( 'deit_base_distilled_patch16_384', pretrained=pretrained, distilled=True, **model_kwargs) return model @register_model def deit3_small_patch16_224(pretrained=False, **kwargs): """ DeiT-3 small model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_small_patch16_224', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_small_patch16_384(pretrained=False, **kwargs): """ DeiT-3 small model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_small_patch16_384', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_medium_patch16_224(pretrained=False, **kwargs): """ DeiT-3 medium model @ 224x224 (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_medium_patch16_224', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_base_patch16_224(pretrained=False, **kwargs): """ DeiT-3 base model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_base_patch16_224', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_base_patch16_384(pretrained=False, **kwargs): """ DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_base_patch16_384', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_large_patch16_224(pretrained=False, **kwargs): """ DeiT-3 large model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_large_patch16_224', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_large_patch16_384(pretrained=False, **kwargs): """ DeiT-3 large model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_large_patch16_384', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_huge_patch14_224(pretrained=False, **kwargs): """ DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_huge_patch14_224', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_small_patch16_224_in21ft1k(pretrained=False, **kwargs): """ DeiT-3 small model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_small_patch16_224_in21ft1k', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_small_patch16_384_in21ft1k(pretrained=False, **kwargs): """ DeiT-3 small model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=384, depth=12, num_heads=6, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_small_patch16_384_in21ft1k', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_medium_patch16_224_in21ft1k(pretrained=False, **kwargs): """ DeiT-3 medium model @ 224x224 (https://arxiv.org/abs/2012.12877). ImageNet-1k weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=512, depth=12, num_heads=8, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_medium_patch16_224_in21ft1k', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_base_patch16_224_in21ft1k(pretrained=False, **kwargs): """ DeiT-3 base model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_base_patch16_224_in21ft1k', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_base_patch16_384_in21ft1k(pretrained=False, **kwargs): """ DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=768, depth=12, num_heads=12, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_base_patch16_384_in21ft1k', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_large_patch16_224_in21ft1k(pretrained=False, **kwargs): """ DeiT-3 large model @ 224x224 from paper (https://arxiv.org/abs/2204.07118). ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_large_patch16_224_in21ft1k', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_large_patch16_384_in21ft1k(pretrained=False, **kwargs): """ DeiT-3 large model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=16, embed_dim=1024, depth=24, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_large_patch16_384_in21ft1k', pretrained=pretrained, **model_kwargs) return model @register_model def deit3_huge_patch14_224_in21ft1k(pretrained=False, **kwargs): """ DeiT-3 base model @ 384x384 from paper (https://arxiv.org/abs/2204.07118). ImageNet-21k pretrained weights from https://github.com/facebookresearch/deit. """ model_kwargs = dict( patch_size=14, embed_dim=1280, depth=32, num_heads=16, no_embed_class=True, init_values=1e-6, **kwargs) model = _create_deit('deit3_huge_patch14_224_in21ft1k', pretrained=pretrained, **model_kwargs) return model