from impact.utils import * from impact import impact_sampling from comfy import model_management from comfy.cli_args import args import nodes try: from comfy_extras import nodes_differential_diffusion except Exception: print(f"[Impact Pack] ComfyUI is an outdated version. The DifferentialDiffusion feature will be disabled.") # Implementation based on `https://github.com/lingondricka2/Upscaler-Detailer` # code from comfyroll ---> # https://github.com/Suzie1/ComfyUI_Comfyroll_CustomNodes/blob/main/nodes/functions_upscale.py def upscale_with_model(upscale_model, image): device = model_management.get_torch_device() upscale_model.to(device) in_img = image.movedim(-1, -3).to(device) free_memory = model_management.get_free_memory(device) tile = 512 overlap = 32 oom = True while oom: try: steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap) pbar = comfy.utils.ProgressBar(steps) s = comfy.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar) oom = False except model_management.OOM_EXCEPTION as e: tile //= 2 if tile < 128: raise e s = torch.clamp(s.movedim(-3, -1), min=0, max=1.0) return s def apply_resize_image(image: Image.Image, original_width, original_height, rounding_modulus, mode='scale', supersample='true', factor: int = 2, width: int = 1024, height: int = 1024, resample='bicubic'): # Calculate the new width and height based on the given mode and parameters if mode == 'rescale': new_width, new_height = int(original_width * factor), int(original_height * factor) else: m = rounding_modulus original_ratio = original_height / original_width height = int(width * original_ratio) new_width = width if width % m == 0 else width + (m - width % m) new_height = height if height % m == 0 else height + (m - height % m) # Define a dictionary of resampling filters resample_filters = {'nearest': 0, 'bilinear': 2, 'bicubic': 3, 'lanczos': 1} # Apply supersample if supersample == 'true': image = image.resize((new_width * 8, new_height * 8), resample=Image.Resampling(resample_filters[resample])) # Resize the image using the given resampling filter resized_image = image.resize((new_width, new_height), resample=Image.Resampling(resample_filters[resample])) return resized_image def upscaler(image, upscale_model, rescale_factor, resampling_method, supersample, rounding_modulus): if upscale_model is not None: up_image = upscale_with_model(upscale_model, image) else: up_image = image pil_img = tensor2pil(image) original_width, original_height = pil_img.size scaled_image = pil2tensor(apply_resize_image(tensor2pil(up_image), original_width, original_height, rounding_modulus, 'rescale', supersample, rescale_factor, 1024, resampling_method)) return scaled_image # <--- def img2img_segs(image, model, clip, vae, seed, steps, cfg, sampler_name, scheduler, positive, negative, denoise, noise_mask, control_net_wrapper=None, inpaint_model=False, noise_mask_feather=0, scheduler_func_opt=None): original_image_size = image.shape[1:3] # Match to original image size if original_image_size[0] % 8 > 0 or original_image_size[1] % 8 > 0: scale = 8/min(original_image_size[0], original_image_size[1]) + 1 w = int(original_image_size[1] * scale) h = int(original_image_size[0] * scale) image = tensor_resize(image, w, h) if noise_mask is not None: noise_mask = tensor_gaussian_blur_mask(noise_mask, noise_mask_feather) noise_mask = noise_mask.squeeze(3) if noise_mask_feather > 0 and 'denoise_mask_function' not in model.model_options: model = nodes_differential_diffusion.DifferentialDiffusion().apply(model)[0] if control_net_wrapper is not None: positive, negative, _ = control_net_wrapper.apply(positive, negative, image, noise_mask) # prepare mask if noise_mask is not None and inpaint_model: positive, negative, latent_image = nodes.InpaintModelConditioning().encode(positive, negative, image, vae, noise_mask) else: latent_image = to_latent_image(image, vae) if noise_mask is not None: latent_image['noise_mask'] = noise_mask refined_latent = latent_image # ksampler refined_latent = impact_sampling.ksampler_wrapper(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, refined_latent, denoise, scheduler_func=scheduler_func_opt) # non-latent downscale - latent downscale cause bad quality refined_image = vae.decode(refined_latent['samples']) # prevent mixing of device refined_image = refined_image.cpu() # Match to original image size if refined_image.shape[1:3] != original_image_size: refined_image = tensor_resize(refined_image, original_image_size[1], original_image_size[0]) # don't convert to latent - latent break image # preserving pil is much better return refined_image