from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, run_script import comfy.model_management as model_management import sys def install_deps(): try: import sklearn except: run_script([sys.executable, '-s', '-m', 'pip', 'install', 'scikit-learn']) class DiffusionEdge_Preprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs( environment=INPUT.COMBO(["indoor", "urban", "natrual"]), patch_batch_size=INPUT.INT(default=4, min=1, max=16), resolution=INPUT.RESOLUTION() ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Line Extractors" def execute(self, image, environment="indoor", patch_batch_size=4, resolution=512, **kwargs): install_deps() from custom_controlnet_aux.diffusion_edge import DiffusionEdgeDetector model = DiffusionEdgeDetector \ .from_pretrained(filename = f"diffusion_edge_{environment}.pt") \ .to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution, patch_batch_size=patch_batch_size) del model return (out, ) NODE_CLASS_MAPPINGS = { "DiffusionEdge_Preprocessor": DiffusionEdge_Preprocessor, } NODE_DISPLAY_NAME_MAPPINGS = { "DiffusionEdge_Preprocessor": "Diffusion Edge (batch size ↑ => speed ↑, VRAM ↑)", }