from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT import comfy.model_management as model_management class OneFormer_COCO_SemSegPreprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs(resolution=INPUT.RESOLUTION()) RETURN_TYPES = ("IMAGE",) FUNCTION = "semantic_segmentate" CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" def semantic_segmentate(self, image, resolution=512): from custom_controlnet_aux.oneformer import OneformerSegmentor model = OneformerSegmentor.from_pretrained(filename="150_16_swin_l_oneformer_coco_100ep.pth") model = model.to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution) del model return (out,) class OneFormer_ADE20K_SemSegPreprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs(resolution=INPUT.RESOLUTION()) RETURN_TYPES = ("IMAGE",) FUNCTION = "semantic_segmentate" CATEGORY = "ControlNet Preprocessors/Semantic Segmentation" def semantic_segmentate(self, image, resolution=512): from custom_controlnet_aux.oneformer import OneformerSegmentor model = OneformerSegmentor.from_pretrained(filename="250_16_swin_l_oneformer_ade20k_160k.pth") model = model.to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution) del model return (out,) NODE_CLASS_MAPPINGS = { "OneFormer-COCO-SemSegPreprocessor": OneFormer_COCO_SemSegPreprocessor, "OneFormer-ADE20K-SemSegPreprocessor": OneFormer_ADE20K_SemSegPreprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "OneFormer-COCO-SemSegPreprocessor": "OneFormer COCO Segmentor", "OneFormer-ADE20K-SemSegPreprocessor": "OneFormer ADE20K Segmentor" }