dependencies = ["torch"] import torch from custom_midas_repo.midas.dpt_depth import DPTDepthModel from custom_midas_repo.midas.midas_net import MidasNet from custom_midas_repo.midas.midas_net_custom import MidasNet_small def DPT_BEiT_L_512(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_BEiT_L_512 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="beitl16_512", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_512.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_BEiT_L_384(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_BEiT_L_384 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="beitl16_384", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_large_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_BEiT_B_384(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_BEiT_B_384 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="beitb16_384", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_beit_base_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_SwinV2_L_384(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_SwinV2_L_384 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="swin2l24_384", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_large_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_SwinV2_B_384(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_SwinV2_B_384 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="swin2b24_384", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_base_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_SwinV2_T_256(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_SwinV2_T_256 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="swin2t16_256", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin2_tiny_256.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_Swin_L_384(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_Swin_L_384 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="swinl12_384", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_swin_large_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_Next_ViT_L_384(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_Next_ViT_L_384 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="next_vit_large_6m", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_next_vit_large_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_LeViT_224(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT_LeViT_224 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="levit_384", non_negative=True, head_features_1=64, head_features_2=8, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3_1/dpt_levit_224.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_Large(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT-Large model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="vitl16_384", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_large_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def DPT_Hybrid(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS DPT-Hybrid model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = DPTDepthModel( path=None, backbone="vitb_rn50_384", non_negative=True, ) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v3/dpt_hybrid_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def MiDaS(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS v2.1 model for monocular depth estimation pretrained (bool): load pretrained weights into model """ model = MidasNet() if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_384.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def MiDaS_small(pretrained=True, **kwargs): """ # This docstring shows up in hub.help() MiDaS v2.1 small model for monocular depth estimation on resource-constrained devices pretrained (bool): load pretrained weights into model """ model = MidasNet_small(None, features=64, backbone="efficientnet_lite3", exportable=True, non_negative=True, blocks={'expand': True}) if pretrained: checkpoint = ( "https://github.com/isl-org/MiDaS/releases/download/v2_1/midas_v21_small_256.pt" ) state_dict = torch.hub.load_state_dict_from_url( checkpoint, map_location=torch.device('cpu'), progress=True, check_hash=True ) model.load_state_dict(state_dict) return model def transforms(): import cv2 from torchvision.transforms import Compose from custom_midas_repo.midas.transforms import Resize, NormalizeImage, PrepareForNet from custom_midas_repo.midas import transforms transforms.default_transform = Compose( [ lambda img: {"image": img / 255.0}, Resize( 384, 384, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="upper_bound", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), ] ) transforms.small_transform = Compose( [ lambda img: {"image": img / 255.0}, Resize( 256, 256, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="upper_bound", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), ] ) transforms.dpt_transform = Compose( [ lambda img: {"image": img / 255.0}, Resize( 384, 384, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="minimal", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), PrepareForNet(), lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), ] ) transforms.beit512_transform = Compose( [ lambda img: {"image": img / 255.0}, Resize( 512, 512, resize_target=None, keep_aspect_ratio=True, ensure_multiple_of=32, resize_method="minimal", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), PrepareForNet(), lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), ] ) transforms.swin384_transform = Compose( [ lambda img: {"image": img / 255.0}, Resize( 384, 384, resize_target=None, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), PrepareForNet(), lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), ] ) transforms.swin256_transform = Compose( [ lambda img: {"image": img / 255.0}, Resize( 256, 256, resize_target=None, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), PrepareForNet(), lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), ] ) transforms.levit_transform = Compose( [ lambda img: {"image": img / 255.0}, Resize( 224, 224, resize_target=None, keep_aspect_ratio=False, ensure_multiple_of=32, resize_method="minimal", image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), PrepareForNet(), lambda sample: torch.from_numpy(sample["image"]).unsqueeze(0), ] ) return transforms