from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT import comfy.model_management as model_management class DSINE_Normal_Map_Preprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs( fov=INPUT.FLOAT(max=365.0, default=60.0), iterations=INPUT.INT(min=1, max=20, default=5), resolution=INPUT.RESOLUTION() ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators" def execute(self, image, fov=60.0, iterations=5, resolution=512, **kwargs): from custom_controlnet_aux.dsine import DsineDetector model = DsineDetector.from_pretrained().to(model_management.get_torch_device()) out = common_annotator_call(model, image, fov=fov, iterations=iterations, resolution=resolution) del model return (out,) NODE_CLASS_MAPPINGS = { "DSINE-NormalMapPreprocessor": DSINE_Normal_Map_Preprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "DSINE-NormalMapPreprocessor": "DSINE Normal Map" }