from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT import comfy.model_management as model_management import numpy as np import warnings from custom_controlnet_aux.dwpose import DwposeDetector, AnimalposeDetector import os import json DWPOSE_MODEL_NAME = "yzd-v/DWPose" #Trigger startup caching for onnxruntime GPU_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CoreMLExecutionProvider"] def check_ort_gpu(): try: import onnxruntime as ort for provider in GPU_PROVIDERS: if provider in ort.get_available_providers(): return True return False except: return False if not os.environ.get("DWPOSE_ONNXRT_CHECKED"): if check_ort_gpu(): print("DWPose: Onnxruntime with acceleration providers detected") else: warnings.warn("DWPose: Onnxruntime not found or doesn't come with acceleration providers, switch to OpenCV with CPU device. DWPose might run very slowly") os.environ['AUX_ORT_PROVIDERS'] = '' os.environ["DWPOSE_ONNXRT_CHECKED"] = '1' class DWPose_Preprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs( detect_hand=INPUT.COMBO(["enable", "disable"]), detect_body=INPUT.COMBO(["enable", "disable"]), detect_face=INPUT.COMBO(["enable", "disable"]), resolution=INPUT.RESOLUTION(), bbox_detector=INPUT.COMBO( ["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"], default="yolox_l.onnx" ), pose_estimator=INPUT.COMBO( ["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx"], default="dw-ll_ucoco_384_bs5.torchscript.pt" ), scale_stick_for_xinsr_cn=INPUT.COMBO(["disable", "enable"]) ) RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT") FUNCTION = "estimate_pose" CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators" def estimate_pose(self, image, detect_hand="enable", detect_body="enable", detect_face="enable", resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx", scale_stick_for_xinsr_cn="disable", **kwargs): if bbox_detector == "yolox_l.onnx": yolo_repo = DWPOSE_MODEL_NAME elif "yolox" in bbox_detector: yolo_repo = "hr16/yolox-onnx" elif "yolo_nas" in bbox_detector: yolo_repo = "hr16/yolo-nas-fp16" else: raise NotImplementedError(f"Download mechanism for {bbox_detector}") if pose_estimator == "dw-ll_ucoco_384.onnx": pose_repo = DWPOSE_MODEL_NAME elif pose_estimator.endswith(".onnx"): pose_repo = "hr16/UnJIT-DWPose" elif pose_estimator.endswith(".torchscript.pt"): pose_repo = "hr16/DWPose-TorchScript-BatchSize5" else: raise NotImplementedError(f"Download mechanism for {pose_estimator}") model = DwposeDetector.from_pretrained( pose_repo, yolo_repo, det_filename=bbox_detector, pose_filename=pose_estimator, torchscript_device=model_management.get_torch_device() ) detect_hand = detect_hand == "enable" detect_body = detect_body == "enable" detect_face = detect_face == "enable" scale_stick_for_xinsr_cn = scale_stick_for_xinsr_cn == "enable" self.openpose_dicts = [] def func(image, **kwargs): pose_img, openpose_dict = model(image, **kwargs) self.openpose_dicts.append(openpose_dict) return pose_img out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution, xinsr_stick_scaling=scale_stick_for_xinsr_cn) del model return { 'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] }, "result": (out, self.openpose_dicts) } class AnimalPose_Preprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs( bbox_detector = INPUT.COMBO( ["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"], default="yolox_l.torchscript.pt" ), pose_estimator = INPUT.COMBO( ["rtmpose-m_ap10k_256_bs5.torchscript.pt", "rtmpose-m_ap10k_256.onnx"], default="rtmpose-m_ap10k_256_bs5.torchscript.pt" ), resolution = INPUT.RESOLUTION() ) RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT") FUNCTION = "estimate_pose" CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators" def estimate_pose(self, image, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="rtmpose-m_ap10k_256.onnx", **kwargs): if bbox_detector == "yolox_l.onnx": yolo_repo = DWPOSE_MODEL_NAME elif "yolox" in bbox_detector: yolo_repo = "hr16/yolox-onnx" elif "yolo_nas" in bbox_detector: yolo_repo = "hr16/yolo-nas-fp16" else: raise NotImplementedError(f"Download mechanism for {bbox_detector}") if pose_estimator == "dw-ll_ucoco_384.onnx": pose_repo = DWPOSE_MODEL_NAME elif pose_estimator.endswith(".onnx"): pose_repo = "hr16/UnJIT-DWPose" elif pose_estimator.endswith(".torchscript.pt"): pose_repo = "hr16/DWPose-TorchScript-BatchSize5" else: raise NotImplementedError(f"Download mechanism for {pose_estimator}") model = AnimalposeDetector.from_pretrained( pose_repo, yolo_repo, det_filename=bbox_detector, pose_filename=pose_estimator, torchscript_device=model_management.get_torch_device() ) self.openpose_dicts = [] def func(image, **kwargs): pose_img, openpose_dict = model(image, **kwargs) self.openpose_dicts.append(openpose_dict) return pose_img out = common_annotator_call(func, image, image_and_json=True, resolution=resolution) del model return { 'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] }, "result": (out, self.openpose_dicts) } NODE_CLASS_MAPPINGS = { "DWPreprocessor": DWPose_Preprocessor, "AnimalPosePreprocessor": AnimalPose_Preprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "DWPreprocessor": "DWPose Estimator", "AnimalPosePreprocessor": "AnimalPose Estimator (AP10K)" }