from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT import comfy.model_management as model_management class HED_Preprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs( safe=INPUT.COMBO(["enable", "disable"]), resolution=INPUT.RESOLUTION() ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Line Extractors" def execute(self, image, resolution=512, **kwargs): from custom_controlnet_aux.hed import HEDdetector model = HEDdetector.from_pretrained().to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution, safe = kwargs["safe"] == "enable") del model return (out, ) class Fake_Scribble_Preprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs( safe=INPUT.COMBO(["enable", "disable"]), resolution=INPUT.RESOLUTION() ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Line Extractors" def execute(self, image, resolution=512, **kwargs): from custom_controlnet_aux.hed import HEDdetector model = HEDdetector.from_pretrained().to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution, scribble=True, safe=kwargs["safe"]=="enable") del model return (out, ) NODE_CLASS_MAPPINGS = { "HEDPreprocessor": HED_Preprocessor, "FakeScribblePreprocessor": Fake_Scribble_Preprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "HEDPreprocessor": "HED Soft-Edge Lines", "FakeScribblePreprocessor": "Fake Scribble Lines (aka scribble_hed)" }