from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT import comfy.model_management as model_management class LERES_Depth_Map_Preprocessor: @classmethod def INPUT_TYPES(s): return define_preprocessor_inputs( rm_nearest=INPUT.FLOAT(max=100.0), rm_background=INPUT.FLOAT(max=100.0), boost=INPUT.COMBO(["disable", "enable"]), resolution=INPUT.RESOLUTION() ) RETURN_TYPES = ("IMAGE",) FUNCTION = "execute" CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators" def execute(self, image, rm_nearest=0, rm_background=0, resolution=512, boost="disable", **kwargs): from custom_controlnet_aux.leres import LeresDetector model = LeresDetector.from_pretrained().to(model_management.get_torch_device()) out = common_annotator_call(model, image, resolution=resolution, thr_a=rm_nearest, thr_b=rm_background, boost=boost == "enable") del model return (out, ) NODE_CLASS_MAPPINGS = { "LeReS-DepthMapPreprocessor": LERES_Depth_Map_Preprocessor } NODE_DISPLAY_NAME_MAPPINGS = { "LeReS-DepthMapPreprocessor": "LeReS Depth Map (enable boost for leres++)" }