import torch import os import comfy.utils import folder_paths import numpy as np import math import cv2 import PIL.Image from .resampler import Resampler from .CrossAttentionPatch import Attn2Replace, instantid_attention from .utils import tensor_to_image from insightface.app import FaceAnalysis try: import torchvision.transforms.v2 as T except ImportError: import torchvision.transforms as T import torch.nn.functional as F MODELS_DIR = os.path.join(folder_paths.models_dir, "instantid") if "instantid" not in folder_paths.folder_names_and_paths: current_paths = [MODELS_DIR] else: current_paths, _ = folder_paths.folder_names_and_paths["instantid"] folder_paths.folder_names_and_paths["instantid"] = (current_paths, folder_paths.supported_pt_extensions) INSIGHTFACE_DIR = os.path.join(folder_paths.models_dir, "insightface") def draw_kps(image_pil, kps, color_list=[(255,0,0), (0,255,0), (0,0,255), (255,255,0), (255,0,255)]): stickwidth = 4 limbSeq = np.array([[0, 2], [1, 2], [3, 2], [4, 2]]) kps = np.array(kps) h, w, _ = image_pil.shape out_img = np.zeros([h, w, 3]) for i in range(len(limbSeq)): index = limbSeq[i] color = color_list[index[0]] x = kps[index][:, 0] y = kps[index][:, 1] length = ((x[0] - x[1]) ** 2 + (y[0] - y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(y[0] - y[1], x[0] - x[1])) polygon = cv2.ellipse2Poly((int(np.mean(x)), int(np.mean(y))), (int(length / 2), stickwidth), int(angle), 0, 360, 1) out_img = cv2.fillConvexPoly(out_img.copy(), polygon, color) out_img = (out_img * 0.6).astype(np.uint8) for idx_kp, kp in enumerate(kps): color = color_list[idx_kp] x, y = kp out_img = cv2.circle(out_img.copy(), (int(x), int(y)), 10, color, -1) out_img_pil = PIL.Image.fromarray(out_img.astype(np.uint8)) return out_img_pil class InstantID(torch.nn.Module): def __init__(self, instantid_model, cross_attention_dim=1280, output_cross_attention_dim=1024, clip_embeddings_dim=512, clip_extra_context_tokens=16): super().__init__() self.clip_embeddings_dim = clip_embeddings_dim self.cross_attention_dim = cross_attention_dim self.output_cross_attention_dim = output_cross_attention_dim self.clip_extra_context_tokens = clip_extra_context_tokens self.image_proj_model = self.init_proj() self.image_proj_model.load_state_dict(instantid_model["image_proj"]) self.ip_layers = To_KV(instantid_model["ip_adapter"]) def init_proj(self): image_proj_model = Resampler( dim=self.cross_attention_dim, depth=4, dim_head=64, heads=20, num_queries=self.clip_extra_context_tokens, embedding_dim=self.clip_embeddings_dim, output_dim=self.output_cross_attention_dim, ff_mult=4 ) return image_proj_model @torch.inference_mode() def get_image_embeds(self, clip_embed, clip_embed_zeroed): #image_prompt_embeds = clip_embed.clone().detach() image_prompt_embeds = self.image_proj_model(clip_embed) #uncond_image_prompt_embeds = clip_embed_zeroed.clone().detach() uncond_image_prompt_embeds = self.image_proj_model(clip_embed_zeroed) return image_prompt_embeds, uncond_image_prompt_embeds class ImageProjModel(torch.nn.Module): def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): super().__init__() self.cross_attention_dim = cross_attention_dim self.clip_extra_context_tokens = clip_extra_context_tokens self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) self.norm = torch.nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds): embeds = image_embeds clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim) clip_extra_context_tokens = self.norm(clip_extra_context_tokens) return clip_extra_context_tokens class To_KV(torch.nn.Module): def __init__(self, state_dict): super().__init__() self.to_kvs = torch.nn.ModuleDict() for key, value in state_dict.items(): k = key.replace(".weight", "").replace(".", "_") self.to_kvs[k] = torch.nn.Linear(value.shape[1], value.shape[0], bias=False) self.to_kvs[k].weight.data = value def _set_model_patch_replace(model, patch_kwargs, key): to = model.model_options["transformer_options"].copy() if "patches_replace" not in to: to["patches_replace"] = {} else: to["patches_replace"] = to["patches_replace"].copy() if "attn2" not in to["patches_replace"]: to["patches_replace"]["attn2"] = {} else: to["patches_replace"]["attn2"] = to["patches_replace"]["attn2"].copy() if key not in to["patches_replace"]["attn2"]: to["patches_replace"]["attn2"][key] = Attn2Replace(instantid_attention, **patch_kwargs) model.model_options["transformer_options"] = to else: to["patches_replace"]["attn2"][key].add(instantid_attention, **patch_kwargs) class InstantIDModelLoader: @classmethod def INPUT_TYPES(s): return {"required": { "instantid_file": (folder_paths.get_filename_list("instantid"), )}} RETURN_TYPES = ("INSTANTID",) FUNCTION = "load_model" CATEGORY = "InstantID" def load_model(self, instantid_file): ckpt_path = folder_paths.get_full_path("instantid", instantid_file) model = comfy.utils.load_torch_file(ckpt_path, safe_load=True) if ckpt_path.lower().endswith(".safetensors"): st_model = {"image_proj": {}, "ip_adapter": {}} for key in model.keys(): if key.startswith("image_proj."): st_model["image_proj"][key.replace("image_proj.", "")] = model[key] elif key.startswith("ip_adapter."): st_model["ip_adapter"][key.replace("ip_adapter.", "")] = model[key] model = st_model model = InstantID( model, cross_attention_dim=1280, output_cross_attention_dim=model["ip_adapter"]["1.to_k_ip.weight"].shape[1], clip_embeddings_dim=512, clip_extra_context_tokens=16, ) return (model,) def extractFeatures(insightface, image, extract_kps=False): face_img = tensor_to_image(image) out = [] insightface.det_model.input_size = (640,640) # reset the detection size for i in range(face_img.shape[0]): for size in [(size, size) for size in range(640, 128, -64)]: insightface.det_model.input_size = size # TODO: hacky but seems to be working face = insightface.get(face_img[i]) if face: face = sorted(face, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] if extract_kps: out.append(draw_kps(face_img[i], face['kps'])) else: out.append(torch.from_numpy(face['embedding']).unsqueeze(0)) if 640 not in size: print(f"\033[33mINFO: InsightFace detection resolution lowered to {size}.\033[0m") break if out: if extract_kps: out = torch.stack(T.ToTensor()(out), dim=0).permute([0,2,3,1]) else: out = torch.stack(out, dim=0) else: out = None return out class InstantIDFaceAnalysis: @classmethod def INPUT_TYPES(s): return { "required": { "provider": (["CPU", "CUDA", "ROCM", "CoreML"], ), }, } RETURN_TYPES = ("FACEANALYSIS",) FUNCTION = "load_insight_face" CATEGORY = "InstantID" def load_insight_face(self, provider): model = FaceAnalysis(name="antelopev2", root=INSIGHTFACE_DIR, providers=[provider + 'ExecutionProvider',]) # alternative to buffalo_l model.prepare(ctx_id=0, det_size=(640, 640)) return (model,) class FaceKeypointsPreprocessor: @classmethod def INPUT_TYPES(s): return { "required": { "faceanalysis": ("FACEANALYSIS", ), "image": ("IMAGE", ), }, } RETURN_TYPES = ("IMAGE",) FUNCTION = "preprocess_image" CATEGORY = "InstantID" def preprocess_image(self, faceanalysis, image): face_kps = extractFeatures(faceanalysis, image, extract_kps=True) if face_kps is None: face_kps = torch.zeros_like(image) print(f"\033[33mWARNING: no face detected, unable to extract the keypoints!\033[0m") #raise Exception('Face Keypoints Image: No face detected.') return (face_kps,) def add_noise(image, factor): seed = int(torch.sum(image).item()) % 1000000007 torch.manual_seed(seed) mask = (torch.rand_like(image) < factor).float() noise = torch.rand_like(image) noise = torch.zeros_like(image) * (1-mask) + noise * mask return factor*noise class ApplyInstantID: @classmethod def INPUT_TYPES(s): return { "required": { "instantid": ("INSTANTID", ), "insightface": ("FACEANALYSIS", ), "control_net": ("CONTROL_NET", ), "image": ("IMAGE", ), "model": ("MODEL", ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 5.0, "step": 0.01, }), "start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }), "end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }), }, "optional": { "image_kps": ("IMAGE",), "mask": ("MASK",), } } RETURN_TYPES = ("MODEL", "CONDITIONING", "CONDITIONING",) RETURN_NAMES = ("MODEL", "positive", "negative", ) FUNCTION = "apply_instantid" CATEGORY = "InstantID" def apply_instantid(self, instantid, insightface, control_net, image, model, positive, negative, start_at, end_at, weight=.8, ip_weight=None, cn_strength=None, noise=0.35, image_kps=None, mask=None, combine_embeds='average'): dtype = comfy.model_management.unet_dtype() if dtype not in [torch.float32, torch.float16, torch.bfloat16]: dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32 self.dtype = dtype self.device = comfy.model_management.get_torch_device() ip_weight = weight if ip_weight is None else ip_weight cn_strength = weight if cn_strength is None else cn_strength face_embed = extractFeatures(insightface, image) if face_embed is None: raise Exception('Reference Image: No face detected.') # if no keypoints image is provided, use the image itself (only the first one in the batch) face_kps = extractFeatures(insightface, image_kps if image_kps is not None else image[0].unsqueeze(0), extract_kps=True) if face_kps is None: face_kps = torch.zeros_like(image) if image_kps is None else image_kps print(f"\033[33mWARNING: No face detected in the keypoints image!\033[0m") clip_embed = face_embed # InstantID works better with averaged embeds (TODO: needs testing) if clip_embed.shape[0] > 1: if combine_embeds == 'average': clip_embed = torch.mean(clip_embed, dim=0).unsqueeze(0) elif combine_embeds == 'norm average': clip_embed = torch.mean(clip_embed / torch.norm(clip_embed, dim=0, keepdim=True), dim=0).unsqueeze(0) if noise > 0: seed = int(torch.sum(clip_embed).item()) % 1000000007 torch.manual_seed(seed) clip_embed_zeroed = noise * torch.rand_like(clip_embed) #clip_embed_zeroed = add_noise(clip_embed, noise) else: clip_embed_zeroed = torch.zeros_like(clip_embed) # 1: patch the attention self.instantid = instantid self.instantid.to(self.device, dtype=self.dtype) image_prompt_embeds, uncond_image_prompt_embeds = self.instantid.get_image_embeds(clip_embed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype)) image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype) uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype) work_model = model.clone() sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) if mask is not None: mask = mask.to(self.device) patch_kwargs = { "ipadapter": self.instantid, "weight": ip_weight, "cond": image_prompt_embeds, "uncond": uncond_image_prompt_embeds, "mask": mask, "sigma_start": sigma_start, "sigma_end": sigma_end, } number = 0 for id in [4,5,7,8]: # id of input_blocks that have cross attention block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth for index in block_indices: patch_kwargs["module_key"] = str(number*2+1) _set_model_patch_replace(work_model, patch_kwargs, ("input", id, index)) number += 1 for id in range(6): # id of output_blocks that have cross attention block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth for index in block_indices: patch_kwargs["module_key"] = str(number*2+1) _set_model_patch_replace(work_model, patch_kwargs, ("output", id, index)) number += 1 for index in range(10): patch_kwargs["module_key"] = str(number*2+1) _set_model_patch_replace(work_model, patch_kwargs, ("middle", 1, index)) number += 1 # 2: do the ControlNet if mask is not None and len(mask.shape) < 3: mask = mask.unsqueeze(0) cnets = {} cond_uncond = [] is_cond = True for conditioning in [positive, negative]: c = [] for t in conditioning: d = t[1].copy() prev_cnet = d.get('control', None) if prev_cnet in cnets: c_net = cnets[prev_cnet] else: c_net = control_net.copy().set_cond_hint(face_kps.movedim(-1,1), cn_strength, (start_at, end_at)) c_net.set_previous_controlnet(prev_cnet) cnets[prev_cnet] = c_net d['control'] = c_net d['control_apply_to_uncond'] = False d['cross_attn_controlnet'] = image_prompt_embeds.to(comfy.model_management.intermediate_device(), dtype=c_net.cond_hint_original.dtype) if is_cond else uncond_image_prompt_embeds.to(comfy.model_management.intermediate_device(), dtype=c_net.cond_hint_original.dtype) if mask is not None and is_cond: d['mask'] = mask d['set_area_to_bounds'] = False n = [t[0], d] c.append(n) cond_uncond.append(c) is_cond = False return(work_model, cond_uncond[0], cond_uncond[1], ) class ApplyInstantIDAdvanced(ApplyInstantID): @classmethod def INPUT_TYPES(s): return { "required": { "instantid": ("INSTANTID", ), "insightface": ("FACEANALYSIS", ), "control_net": ("CONTROL_NET", ), "image": ("IMAGE", ), "model": ("MODEL", ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "ip_weight": ("FLOAT", {"default": .8, "min": 0.0, "max": 3.0, "step": 0.01, }), "cn_strength": ("FLOAT", {"default": .8, "min": 0.0, "max": 10.0, "step": 0.01, }), "start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }), "end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }), "noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.1, }), "combine_embeds": (['average', 'norm average', 'concat'], {"default": 'average'}), }, "optional": { "image_kps": ("IMAGE",), "mask": ("MASK",), } } class InstantIDAttentionPatch: @classmethod def INPUT_TYPES(s): return { "required": { "instantid": ("INSTANTID", ), "insightface": ("FACEANALYSIS", ), "image": ("IMAGE", ), "model": ("MODEL", ), "weight": ("FLOAT", {"default": 1.0, "min": -1.0, "max": 3.0, "step": 0.01, }), "start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }), "end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }), "noise": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.1, }), }, "optional": { "mask": ("MASK",), } } RETURN_TYPES = ("MODEL", "FACE_EMBEDS") FUNCTION = "patch_attention" CATEGORY = "InstantID" def patch_attention(self, instantid, insightface, image, model, weight, start_at, end_at, noise=0.0, mask=None): self.dtype = torch.float16 if comfy.model_management.should_use_fp16() else torch.float32 self.device = comfy.model_management.get_torch_device() face_embed = extractFeatures(insightface, image) if face_embed is None: raise Exception('Reference Image: No face detected.') clip_embed = face_embed # InstantID works better with averaged embeds (TODO: needs testing) if clip_embed.shape[0] > 1: clip_embed = torch.mean(clip_embed, dim=0).unsqueeze(0) if noise > 0: seed = int(torch.sum(clip_embed).item()) % 1000000007 torch.manual_seed(seed) clip_embed_zeroed = noise * torch.rand_like(clip_embed) else: clip_embed_zeroed = torch.zeros_like(clip_embed) # 1: patch the attention self.instantid = instantid self.instantid.to(self.device, dtype=self.dtype) image_prompt_embeds, uncond_image_prompt_embeds = self.instantid.get_image_embeds(clip_embed.to(self.device, dtype=self.dtype), clip_embed_zeroed.to(self.device, dtype=self.dtype)) image_prompt_embeds = image_prompt_embeds.to(self.device, dtype=self.dtype) uncond_image_prompt_embeds = uncond_image_prompt_embeds.to(self.device, dtype=self.dtype) if weight == 0: return (model, { "cond": image_prompt_embeds, "uncond": uncond_image_prompt_embeds } ) work_model = model.clone() sigma_start = model.get_model_object("model_sampling").percent_to_sigma(start_at) sigma_end = model.get_model_object("model_sampling").percent_to_sigma(end_at) if mask is not None: mask = mask.to(self.device) patch_kwargs = { "weight": weight, "ipadapter": self.instantid, "cond": image_prompt_embeds, "uncond": uncond_image_prompt_embeds, "mask": mask, "sigma_start": sigma_start, "sigma_end": sigma_end, } number = 0 for id in [4,5,7,8]: # id of input_blocks that have cross attention block_indices = range(2) if id in [4, 5] else range(10) # transformer_depth for index in block_indices: patch_kwargs["module_key"] = str(number*2+1) _set_model_patch_replace(work_model, patch_kwargs, ("input", id, index)) number += 1 for id in range(6): # id of output_blocks that have cross attention block_indices = range(2) if id in [3, 4, 5] else range(10) # transformer_depth for index in block_indices: patch_kwargs["module_key"] = str(number*2+1) _set_model_patch_replace(work_model, patch_kwargs, ("output", id, index)) number += 1 for index in range(10): patch_kwargs["module_key"] = str(number*2+1) _set_model_patch_replace(work_model, patch_kwargs, ("middle", 0, index)) number += 1 return(work_model, { "cond": image_prompt_embeds, "uncond": uncond_image_prompt_embeds }, ) class ApplyInstantIDControlNet: @classmethod def INPUT_TYPES(s): return { "required": { "face_embeds": ("FACE_EMBEDS", ), "control_net": ("CONTROL_NET", ), "image_kps": ("IMAGE", ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01, }), "start_at": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, }), "end_at": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001, }), }, "optional": { "mask": ("MASK",), } } RETURN_TYPES = ("CONDITIONING", "CONDITIONING",) RETURN_NAMES = ("positive", "negative", ) FUNCTION = "apply_controlnet" CATEGORY = "InstantID" def apply_controlnet(self, face_embeds, control_net, image_kps, positive, negative, strength, start_at, end_at, mask=None): self.device = comfy.model_management.get_torch_device() if strength == 0: return (positive, negative) if mask is not None: mask = mask.to(self.device) if mask is not None and len(mask.shape) < 3: mask = mask.unsqueeze(0) image_prompt_embeds = face_embeds['cond'] uncond_image_prompt_embeds = face_embeds['uncond'] cnets = {} cond_uncond = [] control_hint = image_kps.movedim(-1,1) is_cond = True for conditioning in [positive, negative]: c = [] for t in conditioning: d = t[1].copy() prev_cnet = d.get('control', None) if prev_cnet in cnets: c_net = cnets[prev_cnet] else: c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_at, end_at)) c_net.set_previous_controlnet(prev_cnet) cnets[prev_cnet] = c_net d['control'] = c_net d['control_apply_to_uncond'] = False d['cross_attn_controlnet'] = image_prompt_embeds.to(comfy.model_management.intermediate_device()) if is_cond else uncond_image_prompt_embeds.to(comfy.model_management.intermediate_device()) if mask is not None and is_cond: d['mask'] = mask d['set_area_to_bounds'] = False n = [t[0], d] c.append(n) cond_uncond.append(c) is_cond = False return(cond_uncond[0], cond_uncond[1]) NODE_CLASS_MAPPINGS = { "InstantIDModelLoader": InstantIDModelLoader, "InstantIDFaceAnalysis": InstantIDFaceAnalysis, "ApplyInstantID": ApplyInstantID, "ApplyInstantIDAdvanced": ApplyInstantIDAdvanced, "FaceKeypointsPreprocessor": FaceKeypointsPreprocessor, "InstantIDAttentionPatch": InstantIDAttentionPatch, "ApplyInstantIDControlNet": ApplyInstantIDControlNet, } NODE_DISPLAY_NAME_MAPPINGS = { "InstantIDModelLoader": "Load InstantID Model", "InstantIDFaceAnalysis": "InstantID Face Analysis", "ApplyInstantID": "Apply InstantID", "ApplyInstantIDAdvanced": "Apply InstantID Advanced", "FaceKeypointsPreprocessor": "Face Keypoints Preprocessor", "InstantIDAttentionPatch": "InstantID Patch Attention", "ApplyInstantIDControlNet": "InstantID Apply ControlNet", }