Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,34 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
6 |
-
import PyPDF2
|
7 |
from TTS.api import TTS # Coqui TTS library
|
|
|
8 |
|
9 |
-
# Initialize
|
|
|
|
|
10 |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
11 |
|
12 |
-
# Load local models for inference
|
13 |
-
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-base")
|
14 |
-
conversation_model = pipeline("text-generation", model="facebook/blenderbot-400M-distill")
|
15 |
-
|
16 |
-
# Load a pre-trained model for vector embeddings
|
17 |
-
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
18 |
-
|
19 |
# Parse PDF and create resume content
|
20 |
def parse_resume(pdf):
|
21 |
-
"""Extract text from an uploaded PDF file."""
|
22 |
reader = PyPDF2.PdfReader(pdf)
|
23 |
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
|
24 |
-
|
25 |
-
return sections
|
26 |
-
|
27 |
-
# Process job description text
|
28 |
-
def process_job_description(job_desc):
|
29 |
-
"""Encode the job description for analysis."""
|
30 |
-
return embedding_model.encode(job_desc)
|
31 |
|
32 |
-
# Process
|
33 |
-
def
|
34 |
-
resume_content = parse_resume(pdf)
|
35 |
resume_embeddings = {
|
36 |
-
section: embedding_model.encode(content)
|
|
|
37 |
}
|
38 |
-
|
|
|
39 |
|
40 |
-
# Generate
|
41 |
-
def generate_question(
|
42 |
-
|
43 |
-
user_embedding = embedding_model.encode(user_input)
|
44 |
similarities = {
|
45 |
section: cosine_similarity([user_embedding], [embedding])[0][0]
|
46 |
for section, embedding in resume_embeddings.items()
|
@@ -48,78 +36,74 @@ def generate_question(user_input, resume_embeddings):
|
|
48 |
most_relevant_section = max(similarities, key=similarities.get)
|
49 |
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
|
50 |
|
51 |
-
# Generate TTS
|
52 |
-
def generate_audio(
|
53 |
-
"""Convert text to audio using Coqui TTS."""
|
54 |
audio_path = "output.wav"
|
55 |
-
tts_model.tts_to_file(text=
|
56 |
return audio_path
|
57 |
|
58 |
-
#
|
59 |
class MockInterview:
|
60 |
def __init__(self):
|
61 |
self.resume_embeddings = None
|
62 |
self.job_desc_embedding = None
|
63 |
self.interview_active = False
|
|
|
64 |
|
65 |
-
def
|
66 |
-
self.resume_embeddings =
|
67 |
-
self.job_desc_embedding = process_job_description(job_desc)
|
68 |
self.interview_active = True
|
69 |
-
|
70 |
-
|
71 |
-
return "Resume and job description processed. Starting the interview.", audio_output
|
72 |
|
73 |
-
def
|
74 |
if not self.interview_active:
|
75 |
-
return "
|
|
|
|
|
|
|
76 |
|
77 |
-
# Transcribe audio
|
78 |
-
transcription = stt_model(audio_file)["text"]
|
79 |
if not transcription.strip():
|
80 |
-
return "No
|
81 |
|
82 |
-
# Generate next question
|
83 |
-
|
84 |
-
|
85 |
-
return transcription, audio_output
|
86 |
|
87 |
def end_interview(self):
|
88 |
self.interview_active = False
|
89 |
-
|
90 |
-
return "Interview ended. Thank you for participating.", audio_output
|
91 |
|
92 |
mock_interview = MockInterview()
|
93 |
|
94 |
-
|
95 |
-
|
|
|
96 |
|
97 |
-
def
|
98 |
-
return mock_interview.
|
99 |
|
100 |
def end_interview():
|
101 |
return mock_interview.end_interview()
|
102 |
|
103 |
interface = gr.Blocks()
|
|
|
104 |
with interface:
|
105 |
-
gr.Markdown("
|
106 |
-
Upload your resume and job description, then engage in a realistic audio-based interview simulation.""")
|
107 |
|
108 |
with gr.Row():
|
109 |
resume_input = gr.File(label="Upload Resume (PDF)")
|
110 |
job_desc_input = gr.Textbox(label="Paste Job Description")
|
111 |
-
upload_button = gr.Button("Upload and Start Interview")
|
112 |
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
end_button.click(end_interview, outputs=[transcription_output, question_output])
|
123 |
|
124 |
if __name__ == "__main__":
|
125 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import time
|
3 |
from transformers import pipeline
|
4 |
from sentence_transformers import SentenceTransformer
|
5 |
from sklearn.metrics.pairwise import cosine_similarity
|
|
|
6 |
from TTS.api import TTS # Coqui TTS library
|
7 |
+
import PyPDF2
|
8 |
|
9 |
+
# Initialize Models
|
10 |
+
stt_model = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
11 |
+
embedding_model = SentenceTransformer("all-MiniLM-L6-v2")
|
12 |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
# Parse PDF and create resume content
|
15 |
def parse_resume(pdf):
|
|
|
16 |
reader = PyPDF2.PdfReader(pdf)
|
17 |
text = "\n".join(page.extract_text() for page in reader.pages if page.extract_text())
|
18 |
+
return {"Resume Content": text}
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Process inputs
|
21 |
+
def process_inputs(resume, job_desc):
|
|
|
22 |
resume_embeddings = {
|
23 |
+
section: embedding_model.encode(content)
|
24 |
+
for section, content in parse_resume(resume).items()
|
25 |
}
|
26 |
+
job_desc_embedding = embedding_model.encode(job_desc)
|
27 |
+
return resume_embeddings, job_desc_embedding
|
28 |
|
29 |
+
# Generate a follow-up question
|
30 |
+
def generate_question(response, resume_embeddings):
|
31 |
+
user_embedding = embedding_model.encode(response)
|
|
|
32 |
similarities = {
|
33 |
section: cosine_similarity([user_embedding], [embedding])[0][0]
|
34 |
for section, embedding in resume_embeddings.items()
|
|
|
36 |
most_relevant_section = max(similarities, key=similarities.get)
|
37 |
return f"Based on your experience in {most_relevant_section}, can you elaborate more?"
|
38 |
|
39 |
+
# Generate TTS audio for a question
|
40 |
+
def generate_audio(question):
|
|
|
41 |
audio_path = "output.wav"
|
42 |
+
tts_model.tts_to_file(text=question, file_path=audio_path)
|
43 |
return audio_path
|
44 |
|
45 |
+
# Conduct a mock interview
|
46 |
class MockInterview:
|
47 |
def __init__(self):
|
48 |
self.resume_embeddings = None
|
49 |
self.job_desc_embedding = None
|
50 |
self.interview_active = False
|
51 |
+
self.current_question = None
|
52 |
|
53 |
+
def start_interview(self, resume, job_desc):
|
54 |
+
self.resume_embeddings, self.job_desc_embedding = process_inputs(resume, job_desc)
|
|
|
55 |
self.interview_active = True
|
56 |
+
self.current_question = "Tell me about yourself."
|
57 |
+
return self.current_question, generate_audio(self.current_question)
|
|
|
58 |
|
59 |
+
def next_interaction(self, user_audio):
|
60 |
if not self.interview_active:
|
61 |
+
return "Interview not started.", None
|
62 |
+
|
63 |
+
# Transcribe user's response
|
64 |
+
transcription = stt_model(user_audio)["text"]
|
65 |
|
|
|
|
|
66 |
if not transcription.strip():
|
67 |
+
return "No response detected. Please try again.", None
|
68 |
|
69 |
+
# Generate the next question
|
70 |
+
self.current_question = generate_question(transcription, self.resume_embeddings)
|
71 |
+
return transcription, generate_audio(self.current_question)
|
|
|
72 |
|
73 |
def end_interview(self):
|
74 |
self.interview_active = False
|
75 |
+
return "Thank you for participating in the interview.", generate_audio("Thank you for participating in the interview. Goodbye!")
|
|
|
76 |
|
77 |
mock_interview = MockInterview()
|
78 |
|
79 |
+
# Gradio Interface
|
80 |
+
def start_interview(resume, job_desc):
|
81 |
+
return mock_interview.start_interview(resume, job_desc)
|
82 |
|
83 |
+
def next_interaction(user_audio):
|
84 |
+
return mock_interview.next_interaction(user_audio)
|
85 |
|
86 |
def end_interview():
|
87 |
return mock_interview.end_interview()
|
88 |
|
89 |
interface = gr.Blocks()
|
90 |
+
|
91 |
with interface:
|
92 |
+
gr.Markdown("### Mock Interview AI\nUpload your resume and job description, and engage in a realistic audio-based mock interview simulation.")
|
|
|
93 |
|
94 |
with gr.Row():
|
95 |
resume_input = gr.File(label="Upload Resume (PDF)")
|
96 |
job_desc_input = gr.Textbox(label="Paste Job Description")
|
|
|
97 |
|
98 |
+
audio_input = gr.Audio(source="microphone", type="filepath", label="Your Response")
|
99 |
+
question_audio_output = gr.Audio(label="Question Audio")
|
100 |
+
transcription_output = gr.Textbox(label="Transcription")
|
101 |
+
interaction_button = gr.Button("Next Interaction")
|
102 |
+
end_button = gr.Button("End Interview")
|
103 |
+
|
104 |
+
resume_uploaded = resume_input.change(start_interview, inputs=[resume_input, job_desc_input], outputs=[transcription_output, question_audio_output])
|
105 |
+
interaction_button.click(next_interaction, inputs=[audio_input], outputs=[transcription_output, question_audio_output])
|
106 |
+
end_button.click(end_interview, outputs=[transcription_output, question_audio_output])
|
|
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
interface.launch()
|