File size: 3,475 Bytes
d3669b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88b5a04
 
d3669b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 31 17:45:36 2023

@author: Gaspar Avit Ferrero
"""

import streamlit as st

from htbuilder import HtmlElement, div, hr, a, p, styles
from htbuilder.units import percent, px
from catboost import CatBoostClassifier


###############################
## ------- FUNCTIONS ------- ##
###############################

def link(link, text, **style):
    return a(_href=link, _target="_blank", style=styles(**style))(text)


def layout(*args):

    style = """
    <style>
      # MainMenu {visibility: hidden;}
      footer {visibility: hidden;}
     .stApp { bottom: 105px; }
    </style>
    """

    style_div = styles(
        position="fixed",
        left=0,
        bottom=0,
        margin=px(0, 0, 0, 0),
        width=percent(100),
        color="black",
        text_align="center",
        height="auto",
        opacity=1
    )

    style_hr = styles(
        display="block",
        margin=px(8, 8, "auto", "auto"),
        border_style="inset",
        border_width=px(0)
    )

    body = p()
    foot = div(
        style=style_div
    )(
        hr(
            style=style_hr
        ),
        body
    )

    st.markdown(style, unsafe_allow_html=True)

    for arg in args:
        if isinstance(arg, str):
            body(arg)

        elif isinstance(arg, HtmlElement):
            body(arg)

    st.markdown(str(foot), unsafe_allow_html=True)


def footer():
    myargs = [
        "Made with ❤️ by ",
        link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"),
    ]
    layout(*myargs)


def update_prediction():
    """Callback to automatically update prediction if button has already been
    clicked"""
    if is_clicked:
        launch_prediction()


def input_layout():

    input_expander = st.expander('Input parameters', True)
    with input_expander:
        # Row 1
        col_age, col_sex = st.columns(2)
        col_age = st.slider('Age', 18, 75, on_change=update_prediction())
        col_sex = st.radio('Sex', ['Female', 'Male'],
                           on_change=update_prediction())
        st.write('div.row-widget.stRadio > div{flex-direction: row \
                 justify-content: center}', unsafe_allow_html=True)

        # Row 2
        col_height, col_weight = st.columns(2)
        col_height = st.slider(
            'Height', 140, 200, on_change=update_prediction())
        col_weight = st.slider(
            'Weight', 40, 140, on_change=update_prediction())

        # Row 3
        col_ap_hi, col_ap_lo = st.columns(2)
        col_ap_hi = st.slider(
            'AP Hi', 90, 200, on_change=update_prediction())
        col_ap_lo = st.slider(
            'AP Lo', 50, 120, on_change=update_prediction())
        

###############################
## --------- MAIN ---------- ##
###############################


if __name__ == "__main__":

    # Initialize image variable
    poster = None

    ## --- Page config ------------ ##
    # Set page title
    st.title("""
    Cardiovascular Disease predictor
    #### This app aims to give a scoring of how probable is that an individual \
    would suffer from a cardiovascular disease given its physical \
         characteristics
    #### Just enter your info and get a prediction.
    """)

    # Set page footer
    footer()

    # Load classification model
    model = CatBoostClassifier()      # parameters not required.
    model.load_model('./train/model.cbm')

    # Define inputs
    input_layout()