Spaces:
Runtime error
Runtime error
File size: 7,767 Bytes
d3669b1 861f354 d3669b1 861f354 39a6d09 d3669b1 861f354 d3669b1 74a5af8 d3669b1 25a55a5 d3669b1 38b6aaf d3669b1 5fde9b8 d3669b1 38b6aaf d3669b1 5fde9b8 d3669b1 74a5af8 d3669b1 858128d 74a5af8 d3669b1 74a5af8 6e63bb7 74a5af8 d3669b1 5fde9b8 8ca3cad 83c060a 5fde9b8 08b0baf d3669b1 51e7390 8ca3cad 83c060a 51e7390 8ca3cad 83c060a d3669b1 51e7390 8ca3cad 801630b 51e7390 8ca3cad 801630b 74a5af8 6e63bb7 858128d 8ca3cad 858128d 08b0baf 801630b 08b0baf 6e63bb7 858128d 8ca3cad 858128d 801630b 6e63bb7 d7259c8 08b0baf 83c060a 6e63bb7 d7259c8 83c060a 08b0baf 83c060a 6e63bb7 8ca3cad 08b0baf 83c060a 6e63bb7 ba1f774 d3669b1 6e63bb7 74a5af8 6e63bb7 74a5af8 6e63bb7 270b631 74a5af8 270b631 90f031d 5ee4e8b c1c04e1 5ee4e8b c1c04e1 5ee4e8b 90f031d 270b631 74a5af8 d3669b1 5fde9b8 60434b7 858128d 5fde9b8 551de09 d3669b1 74a5af8 5fde9b8 74a5af8 ba1f774 858128d 74a5af8 ba1f774 74a5af8 08b0baf 858128d 74a5af8 ba1f774 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 31 17:45:36 2023.
@author: Gaspar Avit Ferrero
"""
import os
import streamlit as st
import pandas as pd
from streamlit import session_state as session
from htbuilder import HtmlElement, div, hr, a, p, styles
from htbuilder.units import percent, px
from catboost import CatBoostClassifier
from datetime import datetime
###############################
## ------- FUNCTIONS ------- ##
###############################
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def layout(*args):
style = """
<style>
# MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stApp { bottom: 105px; }
</style>
"""
style_div = styles(
position="fixed",
left=0,
bottom=0,
margin=px(0, 0, 0, 0),
width=percent(100),
height=px(10),
color="black",
text_align="center",
# height="auto",
opacity=1
)
style_hr = styles(
display="block",
margin=px(8, 8, "auto", "auto"),
border_style="inset",
border_width=px(0)
)
body = p()
foot = div(
style=style_div
)(
body
)
st.markdown(style, unsafe_allow_html=True)
for arg in args:
if isinstance(arg, str):
body(arg)
elif isinstance(arg, HtmlElement):
body(arg)
st.markdown(str(foot), unsafe_allow_html=True)
def footer():
myargs = [
"Made by ",
link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"),
] # with ❤️
layout(*myargs)
def update_prediction(input_data):
"""Callback to automatically update prediction if button has already been
clicked"""
if IS_CLICKED:
launch_prediction(input_data)
def get_input_data():
"""
Generate input layout and get input values.
-return: DataFrame with input data.
"""
session.input_data = pd.DataFrame()
input_expander = st.expander('Input parameters', True)
with input_expander:
# Row 1
col_age, col_sex = st.columns(2)
with col_age:
session.input_data.loc[0, 'age'] = st.slider('Age', 18, 75)
# on_change=update_prediction(session.input_data)
with col_sex:
session.input_data.loc[0, 'gender'] = st.radio(
'Sex', ['Female', 'Male'])
session.input_data["gender"] = session.input_data["gender"].astype(
'category')
# Row 2
col_height, col_weight = st.columns(2)
with col_height:
session.input_data.loc[0, 'height'] = st.slider('Height', 140, 200)
session.input_data["height"] = session.input_data["height"].astype(
int)
with col_weight:
session.input_data.loc[0, 'weight'] = st.slider('Weight', 40, 140)
session.input_data["weight"] = session.input_data["weight"].astype(
int)
# Row 3
col_ap_hi, col_ap_lo = st.columns(2)
with col_ap_hi:
session.input_data.loc[0, 'ap_hi'] = st.slider(
'Systolic blood pressure', 90, 200)
session.input_data["ap_hi"] = session.input_data["ap_hi"].astype(
int)
with col_ap_lo:
session.input_data.loc[0, 'ap_lo'] = st.slider(
'Diastolic blood pressure', 50, 120)
session.input_data["ap_lo"] = session.input_data["ap_lo"].astype(
int)
# Row 4
col_chole, col_gluc = st.columns(2)
with col_chole:
cholest = st.radio(
'Cholesterol', ['Normal', 'Above normal', 'Well above normal'])
session.input_data.loc[0, 'cholesterol'] = [
1 if 'Normal' in cholest else 2 if 'Above normal' in cholest
else 3][0]
session.input_data["cholesterol"] = (session
.input_data["cholesterol"]
.astype(int)
.astype('category')
)
with col_gluc:
gluc = st.radio(
'Glucose', ['Normal', 'Above normal', 'Well above normal'])
session.input_data.loc[0, 'gluc'] = [
1 if 'Normal' in gluc else 2 if 'Above normal' in gluc
else 3][0]
session.input_data["gluc"] = (session
.input_data["gluc"]
.astype(int)
.astype('category')
)
# Row 5
col_alco, col_smk = st.columns(2)
with col_alco:
alco = st.radio('Alcohol intake', ['Yes', 'No'], 1)
session.input_data.loc[0, 'alco'] = [1 if 'Yes' in alco else 0][0]
session.input_data["alco"] = session.input_data["alco"].astype(
bool)
with col_smk:
smoke = st.radio('Smoking', ['Yes', 'No'], 1)
session.input_data.loc[0, 'smoke'] = [1 if 'Yes' in smoke
else 0][0]
session.input_data["smoke"] = session.input_data["smoke"].astype(
bool)
# Row 6
active = st.radio('Physical activity', ['Yes', 'No'])
session.input_data.loc[0, 'active'] = [1 if 'Yes' in active else 0][0]
session.input_data["active"] = session.input_data["active"].astype(
bool)
st.write("")
# Compute extra features
session.input_data["bmi"] = session.input_data["weight"] \
/ (session.input_data["height"]/100)**2
session.input_data["bad_habits"] = session.input_data["smoke"] \
& session.input_data["alco"]
return session.input_data
def generate_prediction(input_data):
"""
Generate prediction of cardiovascular disease probability based on input
data.
-param input_data: DataFrame with input data
-return: predicted probability of having a cardiovascular disease
"""
# prediction = MODEL.predict(input_data)
proba = MODEL.predict_proba(input_data)
positive_proba = round(proba[0,1]*100)
st.title('Predicted cardiovascular disease probability:')
st.markdown(f"<h1 style='text-align: center; color: grey;'>\
{positive_proba} %</h1>",
unsafe_allow_html=True)
st.progress(positive_proba)
return proba
###############################
## --------- MAIN ---------- ##
###############################
if __name__ == "__main__":
## --- Page config ------------ ##
# Set page title
st.title("""
Cardiovascular Disease predictor
#### This app aims to give a scoring of how probable is that an individual \
would suffer from a cardiovascular disease given its physical \
characteristics
#### Just enter your info and get a prediction.
""")
# Set page footer
# footer()
# Initialize clicking flag
IS_CLICKED = False
## --------------------------- ##
# Load classification model
MODEL = CatBoostClassifier()
MODEL.load_model('./model.cbm')
# Get inputs
session.input_data = get_input_data()
# Create button to trigger poster generation
buffer1, col1, buffer2 = st.columns([1.3, 1, 1])
IS_CLICKED = col1.button(label="Generate predictions")
st.text("")
st.text("")
# Generate prediction
if IS_CLICKED:
st.write('Work in progress!')
prediction = generate_prediction(session.input_data)
st.text("")
st.text("")
|