File size: 4,802 Bytes
d3669b1
 
 
 
 
 
39a6d09
d3669b1
 
74a5af8
d3669b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b6aaf
d3669b1
 
5fde9b8
d3669b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38b6aaf
d3669b1
5fde9b8
d3669b1
 
 
74a5af8
d3669b1
 
 
74a5af8
d3669b1
 
74a5af8
 
 
 
 
 
 
d3669b1
 
 
 
 
5fde9b8
74a5af8
 
5fde9b8
74a5af8
 
 
d3669b1
 
 
51e7390
74a5af8
 
 
51e7390
74a5af8
 
 
d3669b1
 
 
51e7390
74a5af8
 
 
51e7390
74a5af8
 
 
 
ba1f774
d3669b1
74a5af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3669b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fde9b8
 
60434b7
 
5fde9b8
551de09
d3669b1
 
74a5af8
 
5fde9b8
74a5af8
 
 
 
ba1f774
 
74a5af8
ba1f774
 
74a5af8
 
ba1f774
74a5af8
 
 
ba1f774
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# -*- coding: utf-8 -*-
"""
Created on Fri Mar 31 17:45:36 2023

@author: Gaspar Avit Ferrero
"""
import os
import streamlit as st

from streamlit import session_state as session
from htbuilder import HtmlElement, div, hr, a, p, styles
from htbuilder.units import percent, px
from catboost import CatBoostClassifier


###############################
## ------- FUNCTIONS ------- ##
###############################

def link(link, text, **style):
    return a(_href=link, _target="_blank", style=styles(**style))(text)


def layout(*args):

    style = """
    <style>
      # MainMenu {visibility: hidden;}
      footer {visibility: hidden;}
     .stApp { bottom: 105px; }
    </style>
    """

    style_div = styles(
        position="fixed",
        left=0,
        bottom=0,
        margin=px(0, 0, 0, 0),
        width=percent(100),
        height=px(10),
        color="black",
        text_align="center",
        # height="auto",
        opacity=1
    )

    style_hr = styles(
        display="block",
        margin=px(8, 8, "auto", "auto"),
        border_style="inset",
        border_width=px(0)
    )

    body = p()
    foot = div(
        style=style_div
    )(
        body
    )

    st.markdown(style, unsafe_allow_html=True)

    for arg in args:
        if isinstance(arg, str):
            body(arg)

        elif isinstance(arg, HtmlElement):
            body(arg)

    st.markdown(str(foot), unsafe_allow_html=True)


def footer():
    myargs = [
        "Made by ",
        link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"),
    ]  # with ❤️
    layout(*myargs)


def update_prediction(input_data):
    """Callback to automatically update prediction if button has already been
    clicked"""
    if is_clicked:
        launch_prediction(input_data)


def get_input_data():
    """
    Generate input layout and get input values.
        
    -return: DataFrame with input data.
    """
    session.input_data = pd.DataFrame()

    input_expander = st.expander('Input parameters', True)
    with input_expander:
        # Row 1
        col_age, col_sex = st.columns(2)
        with col_age:
            session.input_data['age'] = st.slider(
                'Age', 18, 75, on_change=update_prediction(session.input_data))
        with col_sex:
            session.input_data['sex'] = st.radio(
                'Sex', ['Female', 'Male'],
                on_change=update_prediction(session.input_data))

        # Row 2
        col_height, col_weight = st.columns(2)
        with col_height:
            session.input_data['height'] = st.slider(
                'Height', 140, 200,
                on_change=update_prediction(session.input_data))
        with col_weight:
            session.input_data['weight'] = st.slider(
                'Weight', 40, 140,
                on_change=update_prediction(session.input_data))

        # Row 3
        col_ap_hi, col_ap_lo = st.columns(2)
        with col_ap_hi:
            session.input_data['ap_hi'] = st.slider(
                'Systolic blood pressure', 90, 200,
                on_change=update_prediction(session.input_data))
        with col_ap_lo:
            session.input_data['ap_lo'] = st.slider(
                'Diastolic blood pressure', 50, 120,
                on_change=update_prediction(session.input_data))

        st.write("")

    return session.input_data


def generate_prediction(input_data):
    """
    Generate prediction of cardiovascular disease probability based on input
    data.
    
    -param input_data: DataFrame with input data
    
    -return: prediction of cardiovascular disease probability
    """
    return MODEL.predict(input_data)


###############################
## --------- MAIN ---------- ##
###############################


if __name__ == "__main__":

    ## --- Page config ------------ ##
    # Set page title
    st.title("""
    Cardiovascular Disease predictor
    #### This app aims to give a scoring of how probable is that an individual \
    would suffer from a cardiovascular disease given its physical \
         characteristics
    #### Just enter your info and get a prediction.
    """)

    # Set page footer
    # footer()

    # Initialize clicking flag
    is_clicked = False

    ## --------------------------- ##

    # Load classification model
    MODEL = CatBoostClassifier()
    MODEL.load_model('./model.cbm')

    # Get inputs
    session.input_data = get_input_data()

    # Create button to trigger poster generation
    buffer1, col1, buffer2 = st.columns([1.3, 1, 1])
    is_clicked = col1.button(label="Generate predictions")

    st.text("")
    st.text("")

    # Generate poster
    if is_clicked:
        prediction = generate_prediction(session.input_data)
        st.write(prediction)

    st.text("")
    st.text("")