# -*- coding: utf-8 -*- """ Created on Fri Mar 31 17:45:36 2023. @author: Gaspar Avit Ferrero """ import os import streamlit as st import pandas as pd from streamlit import session_state as session from htbuilder import HtmlElement, div, hr, a, p, styles from htbuilder.units import percent, px from catboost import CatBoostClassifier from datetime import datetime ############################### ## ------- FUNCTIONS ------- ## ############################### def link(link, text, **style): return a(_href=link, _target="_blank", style=styles(**style))(text) def layout(*args): style = """ """ style_div = styles( position="fixed", left=0, bottom=0, margin=px(0, 0, 0, 0), width=percent(100), height=px(10), color="black", text_align="center", # height="auto", opacity=1 ) style_hr = styles( display="block", margin=px(8, 8, "auto", "auto"), border_style="inset", border_width=px(0) ) body = p() foot = div( style=style_div )( body ) st.markdown(style, unsafe_allow_html=True) for arg in args: if isinstance(arg, str): body(arg) elif isinstance(arg, HtmlElement): body(arg) st.markdown(str(foot), unsafe_allow_html=True) def footer(): myargs = [ "Made by ", link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"), ] # with ❤️ layout(*myargs) def update_prediction(input_data): """Callback to automatically update prediction if button has already been clicked""" if IS_CLICKED: launch_prediction(input_data) def get_input_data(): """ Generate input layout and get input values. -return: DataFrame with input data. """ session.input_data = pd.DataFrame() input_expander = st.expander('Input parameters', True) with input_expander: # Row 1 col_age, col_sex = st.columns(2) with col_age: session.input_data.loc[0, 'age'] = st.slider('Age', 18, 75) # on_change=update_prediction(session.input_data) with col_sex: session.input_data.loc[0, 'gender'] = st.radio( 'Sex', ['Female', 'Male']) session.input_data["gender"] = session.input_data["gender"].astype( 'category') # Row 2 col_height, col_weight = st.columns(2) with col_height: session.input_data.loc[0, 'height'] = st.slider('Height', 140, 200) session.input_data["height"] = session.input_data["height"].astype( int) with col_weight: session.input_data.loc[0, 'weight'] = st.slider('Weight', 40, 140) session.input_data["weight"] = session.input_data["weight"].astype( int) # Row 3 col_ap_hi, col_ap_lo = st.columns(2) with col_ap_hi: session.input_data.loc[0, 'ap_hi'] = st.slider( 'Systolic blood pressure', 90, 200) session.input_data["ap_hi"] = session.input_data["ap_hi"].astype( int) with col_ap_lo: session.input_data.loc[0, 'ap_lo'] = st.slider( 'Diastolic blood pressure', 50, 120) session.input_data["ap_lo"] = session.input_data["ap_lo"].astype( int) # Row 4 col_chole, col_gluc = st.columns(2) with col_chole: cholest = st.radio( 'Cholesterol', ['Normal', 'Above normal', 'Well above normal']) session.input_data.loc[0, 'cholesterol'] = [ 1 if 'Normal' in cholest else 2 if 'Above normal' in cholest else 3][0] session.input_data["cholesterol"] = (session .input_data["cholesterol"] .astype(int) .astype('category') ) with col_gluc: gluc = st.radio( 'Glucose', ['Normal', 'Above normal', 'Well above normal']) session.input_data.loc[0, 'gluc'] = [ 1 if 'Normal' in gluc else 2 if 'Above normal' in gluc else 3][0] session.input_data["gluc"] = (session .input_data["gluc"] .astype(int) .astype('category') ) # Row 5 col_alco, col_smk = st.columns(2) with col_alco: alco = st.radio('Alcohol intake', ['Yes', 'No'], 1) session.input_data.loc[0, 'alco'] = [1 if 'Yes' in alco else 0][0] session.input_data["alco"] = session.input_data["alco"].astype( bool) with col_smk: smoke = st.radio('Smoking', ['Yes', 'No'], 1) session.input_data.loc[0, 'smoke'] = [1 if 'Yes' in smoke else 0][0] session.input_data["smoke"] = session.input_data["smoke"].astype( bool) # Row 6 active = st.radio('Physical activity', ['Yes', 'No']) session.input_data.loc[0, 'active'] = [1 if 'Yes' in active else 0][0] session.input_data["active"] = session.input_data["active"].astype( bool) st.write("") # Compute extra features session.input_data["bmi"] = session.input_data["weight"] \ / (session.input_data["height"]/100)**2 session.input_data["bad_habits"] = session.input_data["smoke"] \ & session.input_data["alco"] return session.input_data def generate_prediction(input_data): """ Generate prediction of cardiovascular disease probability based on input data. -param input_data: DataFrame with input data -return: predicted probability of having a cardiovascular disease """ # prediction = MODEL.predict(input_data) proba = MODEL.predict_proba(input_data) positive_proba = round(proba[0,1]*100) st.title('Predicted cardiovascular disease probability:') st.markdown(f"

\ {positive_proba} %

", unsafe_allow_html=True) st.progress(positive_proba) return proba ############################### ## --------- MAIN ---------- ## ############################### if __name__ == "__main__": ## --- Page config ------------ ## # Set page title st.title(""" Cardiovascular Disease predictor #### This app aims to give a scoring of how probable is that an individual \ would suffer from a cardiovascular disease given its physical \ characteristics #### Just enter your info and get a prediction. """) # Set page footer # footer() # Initialize clicking flag IS_CLICKED = False ## --------------------------- ## # Load classification model MODEL = CatBoostClassifier() MODEL.load_model('./model.cbm') # Get inputs session.input_data = get_input_data() # Create button to trigger poster generation buffer1, col1, buffer2 = st.columns([1.3, 1, 1]) IS_CLICKED = col1.button(label="Generate predictions") st.text("") st.text("") # Generate prediction if IS_CLICKED: st.write('Work in progress!') prediction = generate_prediction(session.input_data) st.text("") st.text("")