Spaces:
Runtime error
Runtime error
File size: 6,459 Bytes
dde4b87 9d0fc91 dde4b87 91fa72d dde4b87 6f7d10f 9d0fc91 6f7d10f 9d0fc91 dde4b87 91fa72d dde4b87 b886d0a dde4b87 91fa72d dde4b87 6f7d10f dde4b87 6f7d10f dde4b87 65ccb73 dde4b87 6f7d10f dde4b87 65ccb73 dde4b87 65ccb73 dde4b87 91fa72d 6f7d10f 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 91fa72d dde4b87 65ccb73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
## Alternative movie poster generator
import streamlit as st
import pandas as pd
import numpy as np
import json
import requests
import os
from streamlit import session_state as session
from datetime import time, datetime
from zipfile import ZipFile
from sentence_transformers import SentenceTransformer
from diffusers import DiffusionPipeline
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
###############################
## --- GLOBAL VARIABLES ---- ##
###############################
IS_MODEL_LOADED = False
PATH_JSON = '/home/user/app/.kaggle/kaggle.json'
# Environment variables to authenticate Kaggle account
os.environ['KAGGLE_USERNAME'] = st.secrets['username']
os.environ['KAGGLE_KEY'] = st.secrets['key']
os.environ['KAGGLE_CONFIG_DIR'] = PATH_JSON
from kaggle.api.kaggle_api_extended import KaggleApi
###############################
## ------- FUNCTIONS ------- ##
###############################
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def image(src_as_string, **style):
return img(src=src_as_string, style=styles(**style))
def layout(*args):
style = """
<style>
# MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stApp { bottom: 105px; }
</style>
"""
style_div = styles(
position="fixed",
left=0,
bottom=0,
margin=px(0, 0, 0, 0),
width=percent(100),
color="black",
text_align="center",
height="auto",
opacity=1
)
style_hr = styles(
display="block",
margin=px(8, 8, "auto", "auto"),
border_style="inset",
border_width=px(2)
)
body = p()
foot = div(
style=style_div
)(
hr(
style=style_hr
),
body
)
st.markdown(style, unsafe_allow_html=True)
for arg in args:
if isinstance(arg, str):
body(arg)
elif isinstance(arg, HtmlElement):
body(arg)
st.markdown(str(foot), unsafe_allow_html=True)
def footer():
myargs = [
"Made in ",
image('https://avatars3.githubusercontent.com/u/45109972?s=400&v=4',
width=px(25), height=px(25)),
" with ❤️ by ",
link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"),
]
layout(*myargs)
def authenticate_kaggle():
# Connect to kaggle API
if not os.path.exists(PATH_JSON):
api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
with open(PATH_JSON, 'w') as file:
json.dump(api_token, file)
# Activate Kaggle API
api = KaggleApi()
api.authenticate()
try:
api.authenticate()
except:
with open('/home/appuser/.kaggle/kaggle.json', 'w') as file:
json.dump(api_token, file)
api.authenticate()
@st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True)
def load_dataset():
"""
Load Dataset from Kaggle
-return: dataframe containing dataset
"""
# Connect to kaggle API
authenticate_kaggle()
# Downloading Movies dataset
api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv')
# Extract data
zf = ZipFile('movies_metadata.csv.zip')
zf.extractall()
zf.close()
# Create dataframe
data = pd.read_csv('movies_metadata.csv', low_memory=False)
return data
@st.cache(persist=True, show_spinner=False, allow_output_mutation=True, suppress_st_warning=True)
def load_model():
model = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
IS_MODEL_LOADED = True
return model
#return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
#return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-2")
def query_summarization(text):
"""
Get summarization from HuggingFace Inference API
-param text: text to be summarized
-return: summarized text
"""
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
payload = {"inputs": f"{text}",}
response = requests.request("POST", API_URL, headers=headers, json=payload).json()
return response[0].get('summary_text')
def generate_poster(movie_data):
"""
Function for recommending movies
-param movie_data: metadata of movie selected by user
-return: image of generated alternative poster
"""
# Get summarization of movie synopsis
with st.spinner("Please wait while the synopsis is being summarized..."):
synopsis_sum = query_summarization(movie_data.overview.values[0])
st.text("")
st.text("")
st.text(synopsis_sum)
# Load text-to-image model
if not IS_MODEL_LOADED:
with st.spinner("Loading Text to Image model..."):
pipeline = load_model()
# Get image based on synopsis
poster_image = pipeline(synopsis_sum).images[0]
st.image(poster_image, caption=movie_data.title)
return poster_image
# ------------------------------------------------------- #
###############################
## --------- MAIN ---------- ##
###############################
if __name__ == "__main__":
# Initialize image variable
image = None
## Create dataset
data = load_dataset()
## --- Page config --- ##
# Set page title
st.title("""
Alternative Movie Poster Generator :film_frames:
This is a movie poster generator based on movie's synopsis :sunglasses:
Just select the title of a movie to generate an alternative poster.
""")
## Set page footer
footer()
## ------------------- ##
st.text("")
st.text("")
st.text("")
st.text("")
session.selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title)
st.text("")
st.text("")
buffer1, col1, buffer2 = st.columns([1.3, 1, 1])
is_clicked = col1.button(label="Generate poster!")
if is_clicked:
image = generate_poster(data[data.title==session.selected_movie])
st.text("")
st.text("")
st.text("")
st.text("")
if image is not None:
st.image(image, caption=session.selected_movie.title.values[0])
|