File size: 8,114 Bytes
ac9d9ab
 
 
233b641
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
9fda244
 
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233b641
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e1e792
 
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8ad675
e0d3b95
ac9d9ab
 
e0d3b95
 
 
 
 
 
 
ac9d9ab
 
233b641
ac9d9ab
 
 
 
 
 
 
 
 
ad562e0
ac9d9ab
 
 
 
4e1e792
ac9d9ab
 
 
 
 
 
 
 
073cf07
ac9d9ab
 
 
 
 
 
4e1e792
ad562e0
ac9d9ab
 
865c275
ac9d9ab
 
 
 
 
865c275
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
073cf07
ad562e0
ac9d9ab
 
 
 
073cf07
ac9d9ab
8b234db
 
073cf07
8b234db
ad562e0
233b641
22d28a0
ac9d9ab
073cf07
 
 
 
ac9d9ab
65cf2b0
073cf07
ac9d9ab
 
 
 
 
4e1e792
 
fb06e50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
## Alternative movie poster generator


import streamlit as st
import pandas as pd
import numpy as np
import json
import requests
import os
import io
from streamlit import session_state as session
from datetime import time, datetime
from zipfile import ZipFile
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
from PIL import Image



###############################
## --- GLOBAL VARIABLES ---- ##
###############################


PATH_JSON = '/home/user/.kaggle/kaggle.json'



# Environment variables to authenticate Kaggle account
os.environ['KAGGLE_USERNAME'] = st.secrets['username']
os.environ['KAGGLE_KEY'] = st.secrets['key']
os.environ['KAGGLE_CONFIG_DIR'] = PATH_JSON

from kaggle.api.kaggle_api_extended import KaggleApi



###############################
## ------- FUNCTIONS ------- ##
###############################

def link(link, text, **style):
    return a(_href=link, _target="_blank", style=styles(**style))(text)

def image(src_as_string, **style):
    return img(src=src_as_string, style=styles(**style))

def layout(*args):

    style = """
    <style>
      # MainMenu {visibility: hidden;}
      footer {visibility: hidden;}
     .stApp { bottom: 105px; }
    </style>
    """

    style_div = styles(
        position="fixed",
        left=0,
        bottom=0,
        margin=px(0, 0, 0, 0),
        width=percent(100),
        color="black",
        text_align="center",
        height="auto",
        opacity=1
    )

    style_hr = styles(
        display="block",
        margin=px(8, 8, "auto", "auto"),
        border_style="inset",
        border_width=px(2)
    )

    body = p()
    foot = div(
        style=style_div
    )(
        hr(
            style=style_hr
        ),
        body
    )

    st.markdown(style, unsafe_allow_html=True)

    for arg in args:
        if isinstance(arg, str):
            body(arg)

        elif isinstance(arg, HtmlElement):
            body(arg)

    st.markdown(str(foot), unsafe_allow_html=True)

def footer():
    myargs = [
        #"Made in ",
        #image('https://avatars3.githubusercontent.com/u/45109972?s=400&v=4',
        #      width=px(25), height=px(25)),
        #" with ❤️ by ",
        "Made with ❤️ by ",
        link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"),
    ]
    layout(*myargs)

def authenticate_kaggle():
    # Connect to kaggle API

    # Save credentials to json file
    if not os.path.exists(PATH_JSON):
        api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
        with open(PATH_JSON, 'w') as file:
            json.dump(api_token, file)

    # Activate Kaggle API
    global api
    api = KaggleApi()
    api.authenticate()


@st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True, max_entries=1)
def load_dataset():
    """
    Load Dataset from Kaggle
    -return: dataframe containing dataset
    """

    ## --- Connect to kaggle API --- ##
    # Save credentials to json file
    if not os.path.exists(PATH_JSON):
        api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
        with open(PATH_JSON, 'w') as file:
            json.dump(api_token, file)

    # Activate Kaggle API
    global api
    api = KaggleApi()
    api.authenticate()
    ## ----------------------------- ##

    # Downloading Movies dataset
    api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv')

    # Extract data
    zf = ZipFile('movies_metadata.csv.zip')
    zf.extractall() 
    zf.close()

    # Create dataframe
    data = pd.read_csv('movies_metadata.csv', low_memory=False)
    data['year'] = data["release_date"].map(lambda x: x.split('-')[0] if isinstance(x, str) else '0')
    data['title_year'] = data['title'] + ' (' + data['year'] + ')'

    return data


def query_summary(text):
    """
    Get summarization from HuggingFace Inference API
    -param text: text to be summarized
    -return: summarized text
    """
    API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
    headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
    payload = {"inputs": f"{text}",}
    
    response = requests.request("POST", API_URL, headers=headers, json=payload).json()
    
    try:
        text = response[0].get('summary_text')
    except:
        text = response[0]
    return text


def query_generate(text):
    """
    Get image from HuggingFace Inference API
    -param text: text to generate image
    -return: generated image
    """
    API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
    headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
    text = "Poster of movie. " + text
    payload = {"inputs": f"{text}",}
    
    response = requests.post(API_URL, headers=headers, json=payload)

    if 'error' in response.content.decode("utf-8"):
        payload = {"inputs": f"{text}",
                   "options": {"wait_for_model": True},
        }
        response = requests.post(API_URL, headers=headers, json=payload)
      
    return response.content

@st.experimental_memo(persist=False, show_spinner=False, suppress_st_warning=True)
def generate_poster(movie_data):
    """
    Function for recommending movies
    -param movie_data: metadata of movie selected by user
    -return: image of generated alternative poster
    """


    # Get summarization of movie synopsis
    st.text("")
    with st.spinner("Please wait while the synopsis is being summarized..."):
        synopsis_sum = query_summary(movie_data.overview.values[0])

    st.text("")
    st.subheader("Synopsis:")
    st.text("Synopsis summary: " + synopsis_sum)
    st.text("")


    # Get image based on synopsis
    with st.spinner("Generating poster image..."):
        poster_image = query_generate(synopsis_sum)


    # Show image
    try: 
        image = Image.open(io.BytesIO(poster_image))

        st.text("")
        st.text("")
        st.subheader("Resulting poster:")
        col1, col2, col3 = st.columns([1, 6, 1])

        with col1:
            st.write("")

        with col2:
            st.image(image, caption="Movie: \"" + movie_data.title.values[0] + "\"")

        with col3:
            st.write("")

    except:
        st.text(poster_image)


    return poster_image
# ------------------------------------------------------- #


###############################
## --------- MAIN ---------- ##
###############################


if __name__ == "__main__":


    # Initialize image variable
    poster = None

    ## --- Page config ------------ ##
    # Set page title
    st.title("""
    Movie Poster Generator :film_frames:

    #### This is a movie poster generator based on movie's synopsis :sunglasses:

    #### Just select the title of a movie to generate an alternative poster.
    """)

    # Set page footer
    footer()
    ## ---------------------------- ##


    ## Create dataset
    data = load_dataset()

    st.text("")
    st.text("")
    st.text("")
    st.text("")

    ## Select box with all the movies as choices
    session.selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title_year)

    st.text("")
    st.text("")

    ## Create button to trigger poster generation
    buffer1, col1, buffer2 = st.columns([1.3, 1, 1])
    is_clicked = col1.button(label="Generate poster!")

    ## Generate poster
    if is_clicked:
        poster = generate_poster(data[data.title_year==session.selected_movie])
        generate_poster.clear()
        st.runtime.legacy_caching.clear_cache()

    ## Clear cache between runs
    st.runtime.legacy_caching.clear_cache()
    generate_poster.clear()


    _= """
    is_clicked_rerun = None
    if poster is not None:
        buffer1, col1, buffer2 = st.columns([1.3, 1, 1])
        is_clicked_rerun = col1.button(label="Rerun with same movie!")

    if is_clicked_rerun:
        poster = generate_poster(data[data.title_year==selected_movie])
    """