File size: 9,994 Bytes
ac9d9ab
 
 
233b641
ac9d9ab
 
 
 
 
 
9ebedb6
 
ac9d9ab
 
 
 
 
 
 
 
9fda244
 
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a063e30
ac9d9ab
 
 
 
 
 
 
 
 
a063e30
ac9d9ab
b6084ac
ac9d9ab
 
 
 
 
a063e30
ac9d9ab
a063e30
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c9591
ac9d9ab
 
 
d3c9591
ac9d9ab
 
 
d3c9591
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
233b641
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7716a6
ac9d9ab
 
f7716a6
ac9d9ab
 
 
 
f7716a6
 
 
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a8f50c
ac9d9ab
 
 
4a8f50c
 
 
 
ac9d9ab
 
e4d0f4c
4a8f50c
 
 
 
 
 
 
 
 
 
 
 
ac9d9ab
3eaf0d9
0984e5d
8741317
ac9d9ab
 
e0d3b95
657d4a2
 
 
 
 
 
 
 
 
95a5558
ac9d9ab
 
233b641
4a8f50c
ac9d9ab
 
 
 
 
 
d3bc4c5
f7716a6
 
 
d3bc4c5
3eaf0d9
d3bc4c5
57728b1
ac9d9ab
ad562e0
6d82a23
ac9d9ab
 
af93059
ac9d9ab
a7ea406
af93059
 
2074242
 
f243b69
ac9d9ab
b6084ac
 
 
ac9d9ab
 
6d82a23
4a8f50c
ac9d9ab
 
 
f243b69
ac9d9ab
 
 
4e1e792
79ef047
af93059
ac9d9ab
 
d3bc4c5
acf9b17
18e2def
 
a063e30
ac9d9ab
 
2074242
 
f243b69
ac9d9ab
f243b69
ac9d9ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c3c7cb
 
 
 
 
 
ac9d9ab
 
 
 
 
 
 
 
 
 
 
073cf07
f7716a6
ac9d9ab
 
 
 
073cf07
3d9c6f6
4a8f50c
3d9c6f6
4a8f50c
8b234db
acf9b17
 
 
c19700b
fb76caa
c19700b
 
073cf07
8b234db
4a8f50c
f1b4eb9
0984e5d
073cf07
acf9b17
 
18e2def
a063e30
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
## Alternative movie poster generator


import streamlit as st
import pandas as pd
import numpy as np
import json
import requests
import os
import io
import string
import random
from streamlit import session_state as session
from datetime import time, datetime
from zipfile import ZipFile
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
from PIL import Image



###############################
## --- GLOBAL VARIABLES ---- ##
###############################


PATH_JSON = '/home/user/.kaggle/kaggle.json'



# Environment variables to authenticate Kaggle account
os.environ['KAGGLE_USERNAME'] = st.secrets['username']
os.environ['KAGGLE_KEY'] = st.secrets['key']
os.environ['KAGGLE_CONFIG_DIR'] = PATH_JSON

from kaggle.api.kaggle_api_extended import KaggleApi



###############################
## ------- FUNCTIONS ------- ##
###############################

def link(link, text, **style):
    return a(_href=link, _target="_blank", style=styles(**style))(text)


def layout(*args):

    style = """
    <style>
      # MainMenu {visibility: hidden;}
      footer {visibility: hidden;}
     .stApp { bottom: 105px; }
    </style>
    """

    style_div = styles(
        position="fixed",
        left=0,
        bottom=0,
        margin=px(0, 0, 0, 0),
        width=percent(100),
        color="black",
        text_align="center",
        height="auto",
        opacity=1
    )

    style_hr = styles(
        display="block",
        margin=px(4, 4, "auto", "auto"),
        border_style="inset",
        border_width=px(0)
    )

    body = p()
    foot = div(
        style=style_div
    )(
        hr(
            style=style_hr
        ),
        body
    )

    st.markdown(style, unsafe_allow_html=True)

    for arg in args:
        if isinstance(arg, str):
            body(arg)

        elif isinstance(arg, HtmlElement):
            body(arg)

    st.markdown(str(foot), unsafe_allow_html=True)


def footer():
    myargs = [
        "Made with ❤️ by ",
        link("https://www.linkedin.com/in/gaspar-avit/?locale=en_US", "Gaspar Avit"),
    ]
    layout(*myargs)


def authenticate_kaggle():
    # Connect to kaggle API

    # Save credentials to json file
    if not os.path.exists(PATH_JSON):
        api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
        with open(PATH_JSON, 'w') as file:
            json.dump(api_token, file)

    # Activate Kaggle API
    global api
    api = KaggleApi()
    api.authenticate()


@st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True, max_entries=1)
def load_dataset():
    """
    Load Dataset from Kaggle
    -return: dataframe containing dataset
    """

    ## --- Connect to kaggle API --- ##
    # Save credentials to json file
    if not os.path.exists(PATH_JSON):
        api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
        with open(PATH_JSON, 'w') as file:
            json.dump(api_token, file)

    # Activate Kaggle API
    global api
    api = KaggleApi()
    api.authenticate()
    ## ----------------------------- ##

    # Downloading Movies dataset
    api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv')

    # Extract data
    zf = ZipFile('movies_metadata.csv.zip')
    zf.extractall() 
    zf.close()

    # Create dataframe
    data = pd.read_csv('movies_metadata.csv', low_memory=False)
    data['year'] = data["release_date"].map(lambda x: x.split('-')[0] if isinstance(x, str) else '0')
    data['title_year'] = data['title'] + ' (' + data['year'] + ')'

    return data


def query_summary(text):
    """
    Get summarization from HuggingFace Inference API
    -param text: text to be summarized
    -return: summarized text
    """
    API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
    headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
    payload = {"inputs": f"{text}",}
    
    response = requests.request("POST", API_URL, headers=headers, json=payload).json()
    
    try:
        text = response[0].get('summary_text')
    except:
        text = response[0]
    return text


def query_generate(text, title, genres, year, selected_model='Stable Diffusion v1.5'):
    """
    Get image from HuggingFace Inference API
    -param text: text to generate image
    -param title: title of the movie
    -param genres: genres of the movie
    -param year: year of the movie
    
    -return: generated image
    """

    if selected_model=='Stable Diffusion XL':
        API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"

    elif selected_model=='Stable Diffusion v2.1':
        API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"

    elif selected_model=='Stable Diffusion v1.5':
        API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
        
    else:
        raise ValueError("Value not valid for argument 'selected_model'.")
        
    headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
    text = 'A Poster for the movie ' + title.split('(')[0] + 'in portrait mode based on the following synopsis: \"' + text + '\". Style: ' + genres + '. Year ' + year + \
    '. Ignore ' + ''.join(random.choices(string.ascii_letters, k=10))
    payload = {"inputs": f"{text}", "options": {"use_cache": "false"},}
    
    response = requests.post(API_URL, headers=headers, json=payload)

    try:
        response_str = response.content.decode("utf-8")
        if 'error' in response_str:
            payload = {"inputs": f"{text}",
                       "options": {"wait_for_model": True},
            }
            response = requests.post(API_URL, headers=headers, json=payload)
    except:
        pass

    return response.content

@st.experimental_memo(persist=False, show_spinner=False, suppress_st_warning=True)
def generate_poster(movie_data, selected_model):
    """
    Function for recommending movies
    -param movie_data: metadata of movie selected by user
    -return: image of generated alternative poster
    """

    # Get movie metadata
    genres = [i['name'] for i in eval(movie_data['genres'].values[0])]
    genres_string = ', '.join(genres)

    year = movie_data['year'].values[0]
    title = movie_data['title'].values[0]


    # Get summarization of movie synopsis
    st.text("")
    with st.spinner("Summarizing synopsis..."):
        synopsis_sum = query_summary(movie_data.overview.values[0])

    # Print summarized synopsis
    st.text("")
    synopsis_expander = st.expander("Show synopsis", expanded=False)
    with synopsis_expander:
        st.subheader("Summarized synopsis:")
        col1, col2 = st.columns([5, 1])
        with col1:
            st.write(synopsis_sum)
    st.text("")
    st.text("")
    st.text("")
    st.text("")

    # Get image based on synopsis
    with st.spinner("Generating poster..."):
        response_content = query_generate(synopsis_sum, title, genres_string, year, selected_model)

    # Show image
    try: 
        image = Image.open(io.BytesIO(response_content))

        st.text("")
        st.text("")
        st.subheader("Resulting poster:")
        st.text("")
        col1, col2, col3 = st.columns([1, 5, 1])
        with col2:
            st.image(image, caption="Movie: \"" + movie_data.title.values[0] + "\"")
        del image
        st.text("")
        st.text("")
        st.text("")
        st.text("")

    except:
        col1, col2 = st.columns([5, 1])
        with col1:
            st.write(response_content)

    return response_content
# ------------------------------------------------------- #


###############################
## --------- MAIN ---------- ##
###############################


if __name__ == "__main__":


    # Initialize image variable
    poster = None

    ## --- Page config ------------ ##
    # Set page title
    st.title("""
    Movie Poster Generator :film_frames:

    #### This is a movie poster generator based on movie's synopsis :sunglasses:

    #### Just select the title of a movie to generate an alternative poster.
    """)

    # Set page footer
    footer()

    # Set sidebar with info
    st.sidebar.markdown("## Generating movie posters using Stable Diffusion")
    st.sidebar.markdown("This streamlit space aims to generate movie posters based on synopsis.")
    st.sidebar.markdown("Firstly, the synopsis of the selected movie is extracted from the dataset and then summarized using Facebook's BART model.")
    st.sidebar.markdown("Once the movie's summary is ready, it is passed to the Stable Diffusion v1.5 model using HF's Inference API, with some prompt tuning.")
    ## ---------------------------- ##


    ## Create dataset
    data = load_dataset()

    st.text("")
    st.text("")
    st.text("")
    st.text("")

    ## Select box with all the movies as choices
    session.selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title_year)

    st.text("")
    st.text("")

    ## Create button to trigger poster generation
    sd_options = ['Stable Diffusion v1.5', 'Stable Diffusion v2.1', 'Stable Diffusion XL']
    buffer1, col1, col2, buffer2 = st.columns([0.3, 1, 1, 1])
    session.selected_model = col1.selectbox(label="Select SD model version", options=sd_options, label_visibility="collapsed")
    is_clicked = col2.button(label="Generate poster!")

    st.text("")
    st.text("")

    ## Clear cache between runs
    st.runtime.legacy_caching.clear_cache()
    generate_poster.clear()

    ## Generate poster
    if is_clicked:
        poster = generate_poster(data[data.title_year==session.selected_movie], session.selected_model)
        generate_poster.clear()
        st.runtime.legacy_caching.clear_cache()

    st.text("")
    st.text("")
    st.text("")
    st.text("")