gaspar-avit's picture
Update app.py
3eaf0d9
raw
history blame
9.19 kB
## Alternative movie poster generator
import streamlit as st
import pandas as pd
import numpy as np
import json
import requests
import os
import io
import string
import random
from streamlit import session_state as session
from datetime import time, datetime
from zipfile import ZipFile
from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts
from htbuilder.units import percent, px
from htbuilder.funcs import rgba, rgb
from PIL import Image
###############################
## --- GLOBAL VARIABLES ---- ##
###############################
PATH_JSON = '/home/user/.kaggle/kaggle.json'
# Environment variables to authenticate Kaggle account
os.environ['KAGGLE_USERNAME'] = st.secrets['username']
os.environ['KAGGLE_KEY'] = st.secrets['key']
os.environ['KAGGLE_CONFIG_DIR'] = PATH_JSON
from kaggle.api.kaggle_api_extended import KaggleApi
###############################
## ------- FUNCTIONS ------- ##
###############################
def link(link, text, **style):
return a(_href=link, _target="_blank", style=styles(**style))(text)
def layout(*args):
style = """
<style>
# MainMenu {visibility: hidden;}
footer {visibility: hidden;}
.stApp { bottom: 105px; }
</style>
"""
style_div = styles(
position="fixed",
left=0,
bottom=0,
margin=px(0, 0, 0, 0),
width=percent(100),
color="black",
text_align="center",
height="auto",
opacity=1
)
style_hr = styles(
display="block",
margin=px(4, 4, "auto", "auto"),
border_style="inset",
border_width=px(0)
)
body = p()
foot = div(
style=style_div
)(
hr(
style=style_hr
),
body
)
st.markdown(style, unsafe_allow_html=True)
for arg in args:
if isinstance(arg, str):
body(arg)
elif isinstance(arg, HtmlElement):
body(arg)
st.markdown(str(foot), unsafe_allow_html=True)
def footer():
myargs = [
"Made with ❤️ by ",
link("https://www.linkedin.com/in/gaspar-avit/?locale=en_US", "Gaspar Avit"),
]
layout(*myargs)
def authenticate_kaggle():
# Connect to kaggle API
# Save credentials to json file
if not os.path.exists(PATH_JSON):
api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
with open(PATH_JSON, 'w') as file:
json.dump(api_token, file)
# Activate Kaggle API
global api
api = KaggleApi()
api.authenticate()
@st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True, max_entries=1)
def load_dataset():
"""
Load Dataset from Kaggle
-return: dataframe containing dataset
"""
## --- Connect to kaggle API --- ##
# Save credentials to json file
if not os.path.exists(PATH_JSON):
api_token = {"username":st.secrets['username'],"key":st.secrets['key']}
with open(PATH_JSON, 'w') as file:
json.dump(api_token, file)
# Activate Kaggle API
global api
api = KaggleApi()
api.authenticate()
## ----------------------------- ##
# Downloading Movies dataset
api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv')
# Extract data
zf = ZipFile('movies_metadata.csv.zip')
zf.extractall()
zf.close()
# Create dataframe
data = pd.read_csv('movies_metadata.csv', low_memory=False)
data['year'] = data["release_date"].map(lambda x: x.split('-')[0] if isinstance(x, str) else '0')
data['title_year'] = data['title'] + ' (' + data['year'] + ')'
return data
def query_summary(text):
"""
Get summarization from HuggingFace Inference API
-param text: text to be summarized
-return: summarized text
"""
API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn"
headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
payload = {"inputs": f"{text}",}
response = requests.request("POST", API_URL, headers=headers, json=payload).json()
try:
text = response[0].get('summary_text')
except:
text = response[0]
return text
def query_generate(text, title, genres, year):
"""
Get image from HuggingFace Inference API
-param text: text to generate image
-return: generated image
"""
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
#API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1"
headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"}
text = 'A Poster for the movie ' + title.split('(')[0] + 'in portrait mode based on the following synopsis: \"' + text + '\". Style: ' + genres + '. Year ' + year + \
'. Ignore ' + ''.join(random.choices(string.ascii_letters, k=10))
payload = {"inputs": f"{text}", "options": {"use_cache": "false"},}
response = requests.post(API_URL, headers=headers, json=payload)
try:
response_str = response.content.decode("utf-8")
if 'error' in response_str:
payload = {"inputs": f"{text}",
"options": {"wait_for_model": True},
}
response = requests.post(API_URL, headers=headers, json=payload)
except:
pass
return response.content
@st.experimental_memo(persist=False, show_spinner=False, suppress_st_warning=True)
def generate_poster(movie_data):
"""
Function for recommending movies
-param movie_data: metadata of movie selected by user
-return: image of generated alternative poster
"""
# Get movie metadata
genres = [i['name'] for i in eval(movie_data['genres'].values[0])]
genres_string = ', '.join(genres)
year = movie_data['year'].values[0]
title = movie_data['title'].values[0]
# Get summarization of movie synopsis
st.text("")
with st.spinner("Summarizing synopsis..."):
synopsis_sum = query_summary(movie_data.overview.values[0])
# Print summarized synopsis
st.text("")
synopsis_expander = st.expander("Show synopsis", expanded=False)
with synopsis_expander:
st.subheader("Summarized synopsis:")
col1, col2 = st.columns([5, 1])
with col1:
st.write(synopsis_sum)
st.text("")
st.text("")
st.text("")
st.text("")
# Get image based on synopsis
with st.spinner("Generating poster..."):
response_content = query_generate(synopsis_sum, title, genres_string, year)
# Show image
try:
image = Image.open(io.BytesIO(response_content))
st.text("")
st.text("")
st.subheader("Resulting poster:")
st.text("")
col1, col2, col3 = st.columns([1, 5, 1])
with col2:
st.image(image, caption="Movie: \"" + movie_data.title.values[0] + "\"")
del image
st.text("")
st.text("")
st.text("")
st.text("")
except:
col1, col2 = st.columns([5, 1])
with col1:
st.write(response_content)
return response_content
# ------------------------------------------------------- #
###############################
## --------- MAIN ---------- ##
###############################
if __name__ == "__main__":
# Initialize image variable
poster = None
## --- Page config ------------ ##
# Set page title
st.title("""
Movie Poster Generator :film_frames:
#### This is a movie poster generator based on movie's synopsis :sunglasses:
#### Just select the title of a movie to generate an alternative poster.
""")
# Set page footer
footer()
# Set sidebar with info
st.sidebar.markdown("## Generating movie posters using Stable Diffusion")
st.sidebar.markdown("This streamlit space aims to generate movie posters based on synopsis.")
st.sidebar.markdown("Firstly, the synopsis of the selected movie is extracted from the dataset and then summarized using Facebook's BART model.")
st.sidebar.markdown("Once the movie's summary is ready, it is passed to the Stable Diffusion v1.5 model using HF's Inference API, with some prompt tuning.")
## ---------------------------- ##
## Create dataset
data = load_dataset()
st.text("")
st.text("")
st.text("")
st.text("")
## Select box with all the movies as choices
session.selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title_year)
st.text("")
st.text("")
## Create button to trigger poster generation
buffer1, col1, buffer2 = st.columns([1.3, 1, 1])
is_clicked = col1.button(label="Generate poster!")
st.text("")
st.text("")
## Clear cache between runs
st.runtime.legacy_caching.clear_cache()
generate_poster.clear()
## Generate poster
if is_clicked:
poster = generate_poster(data[data.title_year==session.selected_movie])
generate_poster.clear()
st.runtime.legacy_caching.clear_cache()
st.text("")
st.text("")
st.text("")
st.text("")