## Alternative movie poster generator import streamlit as st import pandas as pd import numpy as np import json import requests import os import io import string import random from streamlit import session_state as session from datetime import time, datetime from zipfile import ZipFile from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts from htbuilder.units import percent, px from htbuilder.funcs import rgba, rgb from PIL import Image ############################### ## --- GLOBAL VARIABLES ---- ## ############################### PATH_JSON = '/home/user/.kaggle/kaggle.json' # Environment variables to authenticate Kaggle account os.environ['KAGGLE_USERNAME'] = st.secrets['username'] os.environ['KAGGLE_KEY'] = st.secrets['key'] os.environ['KAGGLE_CONFIG_DIR'] = PATH_JSON from kaggle.api.kaggle_api_extended import KaggleApi ############################### ## ------- FUNCTIONS ------- ## ############################### def link(link, text, **style): return a(_href=link, _target="_blank", style=styles(**style))(text) def layout(*args): style = """ """ style_div = styles( position="fixed", left=0, bottom=0, margin=px(0, 0, 0, 0), width=percent(100), color="black", text_align="center", height="auto", opacity=1 ) style_hr = styles( display="block", margin=px(4, 4, "auto", "auto"), border_style="inset", border_width=px(0) ) body = p() foot = div( style=style_div )( hr( style=style_hr ), body ) st.markdown(style, unsafe_allow_html=True) for arg in args: if isinstance(arg, str): body(arg) elif isinstance(arg, HtmlElement): body(arg) st.markdown(str(foot), unsafe_allow_html=True) def footer(): myargs = [ "Made with ❤️ by ", link("https://www.linkedin.com/in/gaspar-avit/?locale=en_US", "Gaspar Avit"), ] layout(*myargs) def authenticate_kaggle(): # Connect to kaggle API # Save credentials to json file if not os.path.exists(PATH_JSON): api_token = {"username":st.secrets['username'],"key":st.secrets['key']} with open(PATH_JSON, 'w') as file: json.dump(api_token, file) # Activate Kaggle API global api api = KaggleApi() api.authenticate() @st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True, max_entries=1) def load_dataset(): """ Load Dataset from Kaggle -return: dataframe containing dataset """ ## --- Connect to kaggle API --- ## # Save credentials to json file if not os.path.exists(PATH_JSON): api_token = {"username":st.secrets['username'],"key":st.secrets['key']} with open(PATH_JSON, 'w') as file: json.dump(api_token, file) # Activate Kaggle API global api api = KaggleApi() api.authenticate() ## ----------------------------- ## # Downloading Movies dataset api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv') # Extract data zf = ZipFile('movies_metadata.csv.zip') zf.extractall() zf.close() # Create dataframe data = pd.read_csv('movies_metadata.csv', low_memory=False) data['year'] = data["release_date"].map(lambda x: x.split('-')[0] if isinstance(x, str) else '0') data['title_year'] = data['title'] + ' (' + data['year'] + ')' return data def query_summary(text): """ Get summarization from HuggingFace Inference API -param text: text to be summarized -return: summarized text """ API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn" headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"} payload = {"inputs": f"{text}",} response = requests.request("POST", API_URL, headers=headers, json=payload).json() try: text = response[0].get('summary_text') except: text = response[0] return text def query_generate(text, title, genres, year): """ Get image from HuggingFace Inference API -param text: text to generate image -return: generated image """ API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5" #API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-2-1" headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"} text = 'A Poster for the movie ' + title.split('(')[0] + 'in portrait mode based on the following synopsis: \"' + text + '\". Style: ' + genres + '. Year ' + year + \ '. Ignore ' + ''.join(random.choices(string.ascii_letters, k=10)) payload = {"inputs": f"{text}", "options": {"use_cache": "false"},} response = requests.post(API_URL, headers=headers, json=payload) try: response_str = response.content.decode("utf-8") if 'error' in response_str: payload = {"inputs": f"{text}", "options": {"wait_for_model": True}, } response = requests.post(API_URL, headers=headers, json=payload) except: pass return response.content @st.experimental_memo(persist=False, show_spinner=False, suppress_st_warning=True) def generate_poster(movie_data): """ Function for recommending movies -param movie_data: metadata of movie selected by user -return: image of generated alternative poster """ # Get movie metadata genres = [i['name'] for i in eval(movie_data['genres'].values[0])] genres_string = ', '.join(genres) year = movie_data['year'].values[0] title = movie_data['title'].values[0] # Get summarization of movie synopsis st.text("") with st.spinner("Summarizing synopsis..."): synopsis_sum = query_summary(movie_data.overview.values[0]) # Print summarized synopsis st.text("") synopsis_expander = st.expander("Show synopsis", expanded=False) with synopsis_expander: st.subheader("Summarized synopsis:") col1, col2 = st.columns([5, 1]) with col1: st.write(synopsis_sum) st.text("") st.text("") st.text("") st.text("") # Get image based on synopsis with st.spinner("Generating poster..."): response_content = query_generate(synopsis_sum, title, genres_string, year) # Show image try: image = Image.open(io.BytesIO(response_content)) st.text("") st.text("") st.subheader("Resulting poster:") st.text("") col1, col2, col3 = st.columns([1, 5, 1]) with col2: st.image(image, caption="Movie: \"" + movie_data.title.values[0] + "\"") del image st.text("") st.text("") st.text("") st.text("") except: col1, col2 = st.columns([5, 1]) with col1: st.write(response_content) return response_content # ------------------------------------------------------- # ############################### ## --------- MAIN ---------- ## ############################### if __name__ == "__main__": # Initialize image variable poster = None ## --- Page config ------------ ## # Set page title st.title(""" Movie Poster Generator :film_frames: #### This is a movie poster generator based on movie's synopsis :sunglasses: #### Just select the title of a movie to generate an alternative poster. """) # Set page footer footer() # Set sidebar with info st.sidebar.markdown("## Generating movie posters using Stable Diffusion") st.sidebar.markdown("This streamlit space aims to generate movie posters based on synopsis.") st.sidebar.markdown("Firstly, the synopsis of the selected movie is extracted from the dataset and then summarized using Facebook's BART model.") st.sidebar.markdown("Once the movie's summary is ready, it is passed to the Stable Diffusion v1.5 model using HF's Inference API, with some prompt tuning.") ## ---------------------------- ## ## Create dataset data = load_dataset() st.text("") st.text("") st.text("") st.text("") ## Select box with all the movies as choices session.selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title_year) st.text("") st.text("") ## Create button to trigger poster generation buffer1, col1, buffer2 = st.columns([1.3, 1, 1]) is_clicked = col1.button(label="Generate poster!") st.text("") st.text("") ## Clear cache between runs st.runtime.legacy_caching.clear_cache() generate_poster.clear() ## Generate poster if is_clicked: poster = generate_poster(data[data.title_year==session.selected_movie]) generate_poster.clear() st.runtime.legacy_caching.clear_cache() st.text("") st.text("") st.text("") st.text("")