## Alternative movie poster generator import streamlit as st import pandas as pd import numpy as np import json import requests import os from streamlit import session_state as session from datetime import time, datetime from zipfile import ZipFile from sentence_transformers import SentenceTransformer from diffusers import DiffusionPipeline from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts from htbuilder.units import percent, px from htbuilder.funcs import rgba, rgb ############################### ## --- GLOBAL VARIABLES ---- ## ############################### IS_MODEL_LOADED = False PATH_JSON = '/home/user/app/.kaggle/kaggle.json' # Environment variables to authenticate Kaggle account os.environ['KAGGLE_USERNAME'] = st.secrets['username'] os.environ['KAGGLE_KEY'] = st.secrets['key'] os.environ['KAGGLE_CONFIG_DIR'] = PATH_JSON from kaggle.api.kaggle_api_extended import KaggleApi ############################### ## ------- FUNCTIONS ------- ## ############################### def link(link, text, **style): return a(_href=link, _target="_blank", style=styles(**style))(text) def image(src_as_string, **style): return img(src=src_as_string, style=styles(**style)) def layout(*args): style = """ """ style_div = styles( position="fixed", left=0, bottom=0, margin=px(0, 0, 0, 0), width=percent(100), color="black", text_align="center", height="auto", opacity=1 ) style_hr = styles( display="block", margin=px(8, 8, "auto", "auto"), border_style="inset", border_width=px(2) ) body = p() foot = div( style=style_div )( hr( style=style_hr ), body ) st.markdown(style, unsafe_allow_html=True) for arg in args: if isinstance(arg, str): body(arg) elif isinstance(arg, HtmlElement): body(arg) st.markdown(str(foot), unsafe_allow_html=True) def footer(): myargs = [ "Made in ", image('https://avatars3.githubusercontent.com/u/45109972?s=400&v=4', width=px(25), height=px(25)), " with ❤️ by ", link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"), ] layout(*myargs) def authenticate_kaggle(): # Connect to kaggle API if not os.path.exists(PATH_JSON): api_token = {"username":st.secrets['username'],"key":st.secrets['key']} with open(PATH_JSON, 'w') as file: json.dump(api_token, file) # Activate Kaggle API api = KaggleApi() api.authenticate() try: api.authenticate() except: with open('/home/appuser/.kaggle/kaggle.json', 'w') as file: json.dump(api_token, file) api.authenticate() @st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True) def load_dataset(): """ Load Dataset from Kaggle -return: dataframe containing dataset """ # Connect to kaggle API authenticate_kaggle() # Downloading Movies dataset api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv') # Extract data zf = ZipFile('movies_metadata.csv.zip') zf.extractall() zf.close() # Create dataframe data = pd.read_csv('movies_metadata.csv', low_memory=False) return data @st.cache(persist=True, show_spinner=False, allow_output_mutation=True, suppress_st_warning=True) def load_model(): model = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") IS_MODEL_LOADED = True return model #return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") #return DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-2") def query_summarization(text): """ Get summarization from HuggingFace Inference API -param text: text to be summarized -return: summarized text """ API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn" headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"} payload = {"inputs": f"{text}",} response = requests.request("POST", API_URL, headers=headers, json=payload).json() return response[0].get('summary_text') def generate_poster(movie_data): """ Function for recommending movies -param movie_data: metadata of movie selected by user -return: image of generated alternative poster """ # Get summarization of movie synopsis with st.spinner("Please wait while the synopsis is being summarized..."): synopsis_sum = query_summarization(movie_data.overview.values[0]) st.text("") st.text("") st.text(synopsis_sum) # Load text-to-image model if not IS_MODEL_LOADED: with st.spinner("Loading Text to Image model..."): pipeline = load_model() # Get image based on synopsis poster_image = pipeline(synopsis_sum).images[0] st.image(poster_image, caption=movie_data.title) return poster_image # ------------------------------------------------------- # ############################### ## --------- MAIN ---------- ## ############################### if __name__ == "__main__": # Initialize image variable image = None ## Create dataset data = load_dataset() ## --- Page config --- ## # Set page title st.title(""" Alternative Movie Poster Generator :film_frames: This is a movie poster generator based on movie's synopsis :sunglasses: Just select the title of a movie to generate an alternative poster. """) ## Set page footer footer() ## ------------------- ## st.text("") st.text("") st.text("") st.text("") session.selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title) st.text("") st.text("") buffer1, col1, buffer2 = st.columns([1.3, 1, 1]) is_clicked = col1.button(label="Generate poster!") if is_clicked: image = generate_poster(data[data.title==session.selected_movie]) st.text("") st.text("") st.text("") st.text("") if image is not None: st.image(image, caption=session.selected_movie.title.values[0])