## Alternative movie poster generator import streamlit as st import pandas as pd import numpy as np import json import requests import os import io from streamlit import session_state as session from datetime import time, datetime from zipfile import ZipFile from htbuilder import HtmlElement, div, ul, li, br, hr, a, p, img, styles, classes, fonts from htbuilder.units import percent, px from htbuilder.funcs import rgba, rgb from PIL import Image ############################### ## --- GLOBAL VARIABLES ---- ## ############################### PATH_JSON = '/home/user/.kaggle/kaggle.json' # Environment variables to authenticate Kaggle account os.environ['KAGGLE_USERNAME'] = st.secrets['username'] os.environ['KAGGLE_KEY'] = st.secrets['key'] os.environ['KAGGLE_CONFIG_DIR'] = PATH_JSON from kaggle.api.kaggle_api_extended import KaggleApi ############################### ## ------- FUNCTIONS ------- ## ############################### def link(link, text, **style): return a(_href=link, _target="_blank", style=styles(**style))(text) def image(src_as_string, **style): return img(src=src_as_string, style=styles(**style)) def layout(*args): style = """ """ style_div = styles( position="fixed", left=0, bottom=0, margin=px(0, 0, 0, 0), width=percent(100), color="black", text_align="center", height="auto", opacity=1 ) style_hr = styles( display="block", margin=px(8, 8, "auto", "auto"), border_style="inset", border_width=px(2) ) body = p() foot = div( style=style_div )( hr( style=style_hr ), body ) st.markdown(style, unsafe_allow_html=True) for arg in args: if isinstance(arg, str): body(arg) elif isinstance(arg, HtmlElement): body(arg) st.markdown(str(foot), unsafe_allow_html=True) def footer(): myargs = [ #"Made in ", #image('https://avatars3.githubusercontent.com/u/45109972?s=400&v=4', # width=px(25), height=px(25)), #" with ❤️ by ", "Made with ❤️ by ", link("https://www.linkedin.com/in/gaspar-avit/", "Gaspar Avit"), ] layout(*myargs) def authenticate_kaggle(): # Connect to kaggle API # Save credentials to json file if not os.path.exists(PATH_JSON): api_token = {"username":st.secrets['username'],"key":st.secrets['key']} with open(PATH_JSON, 'w') as file: json.dump(api_token, file) # Activate Kaggle API global api api = KaggleApi() api.authenticate() @st.experimental_memo(persist=True, show_spinner=False, suppress_st_warning=True) def load_dataset(): """ Load Dataset from Kaggle -return: dataframe containing dataset """ ## --- Connect to kaggle API --- ## # Save credentials to json file if not os.path.exists(PATH_JSON): api_token = {"username":st.secrets['username'],"key":st.secrets['key']} with open(PATH_JSON, 'w') as file: json.dump(api_token, file) # Activate Kaggle API global api api = KaggleApi() api.authenticate() ## ----------------------------- ## # Downloading Movies dataset api.dataset_download_file('rounakbanik/the-movies-dataset', 'movies_metadata.csv') # Extract data zf = ZipFile('movies_metadata.csv.zip') zf.extractall() zf.close() # Create dataframe data = pd.read_csv('movies_metadata.csv', low_memory=False) data['year'] = data["release_date"].map(lambda x: x.split('-')[0] if isinstance(x, str) else '0') data['title_year'] = data['title'] + ' (' + data['year'] + ')' return data def query_summary(text): """ Get summarization from HuggingFace Inference API -param text: text to be summarized -return: summarized text """ API_URL = "https://api-inference.huggingface.co/models/facebook/bart-large-cnn" headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"} payload = {"inputs": f"{text}",} response = requests.request("POST", API_URL, headers=headers, json=payload).json() try: text = response[0].get('summary_text') except: text = response[0] return text def query_generate(text): """ Get image from HuggingFace Inference API -param text: text to generate image -return: generated image """ API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5" headers = {"Authorization": f"Bearer {st.secrets['hf_token']}"} text = "Poster of movie. " + text payload = {"inputs": f"{text}",} response = requests.post(API_URL, headers=headers, json=payload) return response.content @st.experimental_singleton() def generate_poster(movie_data): """ Function for recommending movies -param movie_data: metadata of movie selected by user -return: image of generated alternative poster """ # Get summarization of movie synopsis with st.spinner("Please wait while the synopsis is being summarized..."): synopsis_sum = query_summary(movie_data.overview.values[0]) st.text("") st.text("") st.subheader("Synopsis:") st.text("Synopsis summary: " + synopsis_sum) st.text("") # Get image based on synopsis with st.spinner("Generating poster image..."): poster_image = query_generate(synopsis_sum) # Show image try: image = Image.open(io.BytesIO(poster_image)) st.text("") st.text("") st.subheader("Resulting poster:") col1, col2, col3 = st.columns([1, 10, 1]) with col1: st.write("") with col2: st.text("") st.image(image, caption="Movie: \"" + movie_data.title.values[0] + "\"") with col3: st.write("") except: st.text(poster_image) return poster_image # ------------------------------------------------------- # ############################### ## --------- MAIN ---------- ## ############################### if __name__ == "__main__": # Initialize image variable poster = None ## --- Page config ------------ ## # Set page title st.title(""" Movie Poster Generator :film_frames: #### This is a movie poster generator based on movie's synopsis :sunglasses: #### Just select the title of a movie to generate an alternative poster. """) # Set page footer footer() ## ---------------------------- ## ## Create dataset data = load_dataset() st.text("") st.text("") st.text("") st.text("") selected_movie = st.selectbox(label="Select a movie to generate alternative poster", options=data.title_year) st.text("") st.text("") buffer1, col1, buffer2 = st.columns([1.3, 1, 1]) is_clicked = col1.button(label="Generate poster!") is_clicked_rerun = None if is_clicked: poster = generate_poster(data[data.title_year==selected_movie]) generate_poster.clear() _= """ if poster is not None: buffer1, col1, buffer2 = st.columns([1.3, 1, 1]) is_clicked_rerun = col1.button(label="Rerun with same movie!") if is_clicked_rerun: poster = generate_poster(data[data.title_year==selected_movie]) """