Update app.py
Browse filesTrying to get the list working
app.py
CHANGED
@@ -66,12 +66,15 @@ def detect_objects(model_name,url_input,image_input,threshold):
|
|
66 |
elif 'yolos' in model_name:
|
67 |
|
68 |
model = YolosForObjectDetection.from_pretrained(model_name)
|
69 |
-
|
|
|
70 |
if validators.url(url_input):
|
71 |
image = Image.open(requests.get(url_input, stream=True).raw)
|
|
|
72 |
|
73 |
elif image_input:
|
74 |
image = image_input
|
|
|
75 |
|
76 |
#Make prediction
|
77 |
processed_output_list = make_prediction(image, feature_extractor, model)
|
@@ -82,8 +85,8 @@ def detect_objects(model_name,url_input,image_input,threshold):
|
|
82 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
83 |
|
84 |
# return [viz_img, processed_outputs]
|
85 |
-
print(type(viz_img))
|
86 |
-
return viz_img
|
87 |
|
88 |
def set_example_image(example: list) -> dict:
|
89 |
return gr.Image.update(value=example[0])
|
@@ -150,16 +153,15 @@ with demo:
|
|
150 |
|
151 |
img_but = gr.Button('Detect')
|
152 |
|
153 |
-
output_text1 = gr.Textbox(value="", label="Confidence Values
|
154 |
-
output_text2 = gr.Textbox(value="", label="Confidence Values Upload")
|
155 |
|
156 |
-
|
157 |
-
|
158 |
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
|
159 |
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
|
160 |
|
161 |
-
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
|
162 |
-
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
|
163 |
|
164 |
|
165 |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
|
|
|
66 |
elif 'yolos' in model_name:
|
67 |
|
68 |
model = YolosForObjectDetection.from_pretrained(model_name)
|
69 |
+
|
70 |
+
tb_label = ""
|
71 |
if validators.url(url_input):
|
72 |
image = Image.open(requests.get(url_input, stream=True).raw)
|
73 |
+
tb_label = "Confidence Values URL"
|
74 |
|
75 |
elif image_input:
|
76 |
image = image_input
|
77 |
+
tb_label = "Confidence Values Upload"
|
78 |
|
79 |
#Make prediction
|
80 |
processed_output_list = make_prediction(image, feature_extractor, model)
|
|
|
85 |
viz_img = visualize_prediction(image, processed_outputs, threshold, model.config.id2label)
|
86 |
|
87 |
# return [viz_img, processed_outputs]
|
88 |
+
# print(type(viz_img))
|
89 |
+
return viz_img, gr.Textbox(value=str(processed_outputs),label=tb_label)
|
90 |
|
91 |
def set_example_image(example: list) -> dict:
|
92 |
return gr.Image.update(value=example[0])
|
|
|
153 |
|
154 |
img_but = gr.Button('Detect')
|
155 |
|
156 |
+
output_text1 = gr.Textbox(value="", label="Confidence Values")
|
|
|
157 |
|
158 |
+
url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, output_text1],queue=True)
|
159 |
+
img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, output_text1],queue=True)
|
160 |
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_url, _],queue=True)
|
161 |
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=[img_output_from_upload, _],queue=True)
|
162 |
|
163 |
+
# url_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_url,queue=True)
|
164 |
+
# img_but.click(detect_objects,inputs=[options,url_input,img_input,slider_input],outputs=img_output_from_upload,queue=True)
|
165 |
|
166 |
|
167 |
example_images.click(fn=set_example_image,inputs=[example_images],outputs=[img_input])
|