import os os.system("pip install torch torchvision") os.system("git clone https://github.com/IDEA-Research/detrex.git") os.system("python -m pip install git+https://github.com/facebookresearch/detectron2.git@v0.6#egg=detectron2") os.system("python -m pip install git+https://github.com/IDEA-Research/detrex.git@v0.5.0#egg=detrex") os.system("git submodule sync") os.system("git submodule update --init") os.system("pip install fairscale") os.system("pip install Pillow==9.5.0") # os.system("cd detrex && pip install -e .") import argparse import glob import multiprocessing as mp import numpy as np import os import sys import tempfile import time import warnings import cv2 import torch import tqdm import gradio as gr # from demo.predictors import VisualizationDemo from detectron2.checkpoint import DetectionCheckpointer from detectron2.config import LazyConfig, instantiate from detectron2.data.detection_utils import read_image from detectron2.utils.logger import setup_logger import warnings warnings.filterwarnings("ignore") import atexit import bisect from copy import copy import multiprocessing as mp from collections import deque import cv2 import torch import detectron2.data.transforms as T from detectron2.data import MetadataCatalog from detectron2.structures import Instances from detectron2.utils.video_visualizer import VideoVisualizer from detectron2.utils.visualizer import ColorMode, Visualizer def filter_predictions_with_confidence(predictions, confidence_threshold=0.5): if "instances" in predictions: preds = predictions["instances"] keep_idxs = preds.scores > confidence_threshold predictions = copy(predictions) # don't modify the original predictions["instances"] = preds[keep_idxs] return predictions class VisualizationDemo(object): def __init__( self, model, min_size_test=800, max_size_test=1333, img_format="RGB", metadata_dataset="coco_2017_val", instance_mode=ColorMode.IMAGE, parallel=False, ): """ Args: cfg (CfgNode): instance_mode (ColorMode): parallel (bool): whether to run the model in different processes from visualization. Useful since the visualization logic can be slow. """ self.metadata = MetadataCatalog.get( metadata_dataset if metadata_dataset is not None else "__unused" ) self.cpu_device = torch.device("cpu") self.instance_mode = instance_mode self.parallel = parallel if parallel: num_gpu = torch.cuda.device_count() self.predictor = AsyncPredictor( model=model, min_size_test=min_size_test, max_size_test=max_size_test, img_format=img_format, metadata_dataset=metadata_dataset, num_gpus=num_gpu, ) else: self.predictor = DefaultPredictor( model=model, min_size_test=min_size_test, max_size_test=max_size_test, img_format=img_format, metadata_dataset=metadata_dataset, ) def run_on_image(self, image, threshold=0.5): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. vis_output (VisImage): the visualized image output. """ vis_output = None predictions = self.predictor(image) predictions = filter_predictions_with_confidence(predictions, threshold) # Convert image from OpenCV BGR format to Matplotlib RGB format. image = image[:, :, ::-1] visualizer = Visualizer(image, self.metadata, instance_mode=self.instance_mode) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_output = visualizer.draw_panoptic_seg_predictions( panoptic_seg.to(self.cpu_device), segments_info ) else: if "sem_seg" in predictions: vis_output = visualizer.draw_sem_seg( predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) if "instances" in predictions: instances = predictions["instances"].to(self.cpu_device) vis_output = visualizer.draw_instance_predictions(predictions=instances) return predictions, vis_output def _frame_from_video(self, video): while video.isOpened(): success, frame = video.read() if success: yield frame else: break def run_on_video(self, video, threshold=0.5): """ Visualizes predictions on frames of the input video. Args: video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be either a webcam or a video file. Yields: ndarray: BGR visualizations of each video frame. """ video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) def process_predictions(frame, predictions, threshold): predictions = filter_predictions_with_confidence(predictions, threshold) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) if "panoptic_seg" in predictions: panoptic_seg, segments_info = predictions["panoptic_seg"] vis_frame = video_visualizer.draw_panoptic_seg_predictions( frame, panoptic_seg.to(self.cpu_device), segments_info ) elif "instances" in predictions: predictions = predictions["instances"].to(self.cpu_device) vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) elif "sem_seg" in predictions: vis_frame = video_visualizer.draw_sem_seg( frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) ) # Converts Matplotlib RGB format to OpenCV BGR format vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) return vis_frame frame_gen = self._frame_from_video(video) if self.parallel: buffer_size = self.predictor.default_buffer_size frame_data = deque() for cnt, frame in enumerate(frame_gen): frame_data.append(frame) self.predictor.put(frame) if cnt >= buffer_size: frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions, threshold) while len(frame_data): frame = frame_data.popleft() predictions = self.predictor.get() yield process_predictions(frame, predictions, threshold) else: for frame in frame_gen: yield process_predictions(frame, self.predictor(frame), threshold) class DefaultPredictor: def __init__( self, model, min_size_test=800, max_size_test=1333, img_format="RGB", metadata_dataset="coco_2017_val", ): self.model = model # self.model.eval() self.metadata = MetadataCatalog.get(metadata_dataset) # checkpointer = DetectionCheckpointer(self.model) # checkpointer.load(init_checkpoint) self.aug = T.ResizeShortestEdge([min_size_test, min_size_test], max_size_test) self.input_format = img_format assert self.input_format in ["RGB", "BGR"], self.input_format def __call__(self, original_image): """ Args: original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). Returns: predictions (dict): the output of the model for one image only. See :doc:`/tutorials/models` for details about the format. """ with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258 # Apply pre-processing to image. if self.input_format == "RGB": # whether the model expects BGR inputs or RGB original_image = original_image[:, :, ::-1] height, width = original_image.shape[:2] image = self.aug.get_transform(original_image).apply_image(original_image) image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) inputs = {"image": image, "height": height, "width": width} predictions = self.model([inputs])[0] return predictions class AsyncPredictor: """ A predictor that runs the model asynchronously, possibly on >1 GPUs. Because rendering the visualization takes considerably amount of time, this helps improve throughput a little bit when rendering videos. """ class _StopToken: pass class _PredictWorker(mp.Process): def __init__( self, model, task_queue, result_queue, min_size_test=800, max_size_test=1333, img_format="RGB", metadata_dataset="coco_2017_val", ): self.model = model self.min_size_test = min_size_test self.max_size_test = max_size_test self.img_format = img_format self.metadata_dataset = metadata_dataset self.task_queue = task_queue self.result_queue = result_queue super().__init__() def run(self): predictor = DefaultPredictor( model=self.model, min_size_test=self.min_size_test, max_size_test=self.max_size_test, img_format=self.img_format, metadata_dataset=self.metadata_dataset, ) while True: task = self.task_queue.get() if isinstance(task, AsyncPredictor._StopToken): break idx, data = task result = predictor(data) self.result_queue.put((idx, result)) def __init__(self, cfg, num_gpus: int = 1): """ Args: cfg (CfgNode): num_gpus (int): if 0, will run on CPU """ num_workers = max(num_gpus, 1) self.task_queue = mp.Queue(maxsize=num_workers * 3) self.result_queue = mp.Queue(maxsize=num_workers * 3) self.procs = [] for gpuid in range(max(num_gpus, 1)): cfg = cfg.clone() cfg.defrost() cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" self.procs.append( AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) ) self.put_idx = 0 self.get_idx = 0 self.result_rank = [] self.result_data = [] for p in self.procs: p.start() atexit.register(self.shutdown) def put(self, image): self.put_idx += 1 self.task_queue.put((self.put_idx, image)) def get(self): self.get_idx += 1 # the index needed for this request if len(self.result_rank) and self.result_rank[0] == self.get_idx: res = self.result_data[0] del self.result_data[0], self.result_rank[0] return res while True: # make sure the results are returned in the correct order idx, res = self.result_queue.get() if idx == self.get_idx: return res insert = bisect.bisect(self.result_rank, idx) self.result_rank.insert(insert, idx) self.result_data.insert(insert, res) def __len__(self): return self.put_idx - self.get_idx def __call__(self, image): self.put(image) return self.get() def shutdown(self): for _ in self.procs: self.task_queue.put(AsyncPredictor._StopToken()) @property def default_buffer_size(self): return len(self.procs) * 5 detrex_model_list = { # DETR "detr/detr_r50_300ep": { "configs": "projects/detr/configs/detr_r50_300ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/converted_detr_r50_500ep.pth" }, "detr/detr_r50_dc5_300ep": { "configs": "projects/detr/configs/detr_r50_dc5_300ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_detr_r50_dc5.pth" }, "detr/detr_r101_300ep.py": { "configs": "projects/detr/configs/detr_r101_300ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/converted_detr_r101_500ep.pth" }, "detr/detr_r101_dc5_300ep.py": { "configs": "projects/detr/configs/detr_r101_dc5_300ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_detr_r101_dc5.pth" }, # Deformable-DETR "deformable_detr/deformable_detr_r50_with_box_refinement_50ep": { "configs": "projects/deformable_detr/configs/deformable_detr_r50_with_box_refinement_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/deformable_detr_with_box_refinement_50ep_new.pth" }, "deformable_detr/deformable_detr_r50_two_stage_50ep": { "configs": "projects/deformable_detr/configs/deformable_detr_r50_two_stage_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/deformable_detr_r50_two_stage_50ep_new.pth" }, # Anchor-DETR "anchor_detr/anchor_detr_r50_50ep":{ "configs":"projects/anchor_detr/configs/anchor_detr_r50_50ep.py", "ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/anchor_detr_r50_50ep.pth" }, "anchor_detr/anchor_detr_r50_50ep_(converted)":{ "configs":"projects/anchor_detr/configs/anchor_detr_r50_50ep.py", "ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_anchor_detr_r50_50ep.pth" }, "anchor_detr/anchor_detr_r50_dc5_50ep":{ "configs":"projects/anchor_detr/configs/anchor_detr_r50_dc5_50ep.py", "ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_anchor_detr_r50_dc5_50ep.pth" }, "anchor_detr/anchor_detr_r101_50ep":{ "configs":"projects/anchor_detr/configs/anchor_detr_r101_dc5_50ep.py", "ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_anchor_detr_r101_dc5_50ep.pth" }, "anchor_detr/anchor_detr_r101_dc5_50ep":{ "configs":"projects/anchor_detr/configs/anchor_detr_r101_dc5_50ep.py", "ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_anchor_detr_r101_50ep.pth" }, # Conditional-DETR "conditional_detr/conditional_detr_r50_50ep":{ "configs":"projects/conditional_detr/configs/conditional_detr_r50_50ep.py", "ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/conditional_detr_r50_50ep.pth" }, "conditional_detr/conditional_detr_r50_50ep_(converted)":{ "configs":"", "ckpts":"" }, "conditional_detr/conditional_detr_r101_50ep":{ "configs":"projects/conditional_detr/configs/conditional_detr_r101_50ep.py", "ckpts":"https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/converted_conditional_detr_r101_50ep.pth" }, "conditional_detr/conditional_detr_r101_dc5_50ep": { "configs": "projects/conditional_detr/configs/conditional_detr_r101_dc5_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_conditional_detr_r101_dc5.pth" }, # DAB-DETR "dab_detr/dab_detr_r50_50ep": { "configs": "projects/dab_detr/configs/dab_detr_r50_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/dab_detr_r50_50ep.pth" }, "dab_detr/dab_detr_r50_3patterns_50ep": { "configs": "projects/dab_detr/configs/dab_detr_r50_3patterns_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_dab_detr_r50_3patterns.pth" }, "dab_detr/dab_detr_r50_dc5_50ep": { "configs": "projects/dab_detr/configs/dab_detr_r50_dc5_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_dab_detr_r50_dc5.pth" }, "dab_detr/dab_detr_r50_dc5_3patterns_50ep": { "configs": "projects/dab_detr/configs/dab_detr_r50_3patterns_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_dab_detr_r50_dc5_3patterns.pth" }, "dab_detr/dab_detr_r101_50ep": { "configs": "projects/dab_detr/configs/dab_detr_r101_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/dab_detr_r101_50ep.pth" }, "dab_detr/dab_detr_r50_dc5_3patterns_50ep_(converted)": { "configs": "projects/dab_detr/configs/dab_detr_r50_dc5_3patterns_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_detr_r101_dc5.pth" }, "dab_detr/dab_detr_swin_t_in1k_50ep": { "configs": "projects/dab_detr/configs/dab_detr_swin_t_in1k_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/dab_detr_swin_t_in1k_50ep.pth" }, "dab_detr/dab_deformable_detr_r50_50ep": { "configs": "projects/dab_detr/configs/dab_deformable_detr_r50_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/dab_deformable_detr_r50_50ep_49AP.pth" }, "dab_detr/dab_deformable_detr_r50_two_stage_50ep": { "configs": "projects/dab_detr/configs/dab_deformable_detr_r50_two_stage_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/dab_deformable_detr_r50_two_stage_49_7AP.pth" }, # DN-DETR "dn_detr/dn_detr_r50_50ep": { "configs": "projects/dn_detr/configs/dn_detr_r50_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.0/dn_detr_r50_50ep.pth" }, "dn_detr/dn_detr_r50_dc5_50ep": { "configs": "projects/dn_detr/configs/dn_detr_r50_dc5_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_dn_detr_r50_dc5.pth" }, # DINO "dino/dino-resnet/dino_r50_5scale_12ep": { "configs": "projects/dino/configs/dino-resnet/dino_r50_5scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_r50_5scale_12ep.pth" }, "dino/dino-resnet/dino_r50_4scale_12ep_300dn": { "configs": "projects/dino/configs/dino-resnet/dino_r50_4scale_12ep_300dn.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/dino_r50_4scale_12ep_300dn.pth" }, "dino/dino-resnet/dino_r50_4scale_24ep": { "configs": "projects/dino/configs/dino-resnet/dino_r50_4scale_24ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_r50_4scale_24ep.pth" }, "dino/dino-resnet/dino_r101_4scale_12ep_": { "configs": "projects/dino/configs/dino-resnet/dino_r101_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_r101_4scale_12ep.pth" }, # Pretrained DINO with Swin-Transformer Backbone "dino/dino-swin/dino_swin_tiny_224_4scale_12ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_tiny_224_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_tiny_224_4scale_12ep.pth" }, "dino/dino-swin/dino_swin_tiny_224_22kto1k_finetune_4scale_12ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_tiny_224_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_tiny_224_22kto1k_finetune_4scale_12ep.pth" }, "dino/dino-swin/dino_swin_small_224_4scale_12ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_tiny_224_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_small_224_4scale_12ep.pth" }, "dino/dino-swin/dino_swin_base_384_4scale_12ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_base_384_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_base_384_4scale_12ep.pth" }, "dino/dino-swin/dino_swin_large_224_4scale_12ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_large_224_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_large_224_4scale_12ep.pth" }, "dino/dino-swin/dino_swin_large_384_4scale_12ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_large_384_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.1.1/dino_swin_large_4scale_12ep.pth" }, "dino/dino-swin/dino_swin_large_384_5scale_12ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_large_384_5scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_swin_large_384_5scale_12ep.pth" }, "dino/dino-swin/dino_swin_large_384_4scale_36ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_large_384_4scale_36ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/dino_swin_large_384_4scale_36ep.pth" }, "dino/dino-swin/dino_swin_large_384_5scale_36ep": { "configs": "projects/dino/configs/dino-swin/dino_swin_large_384_5scale_36ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_swin_large_384_5scale_36ep.pth" }, # Pretrained DINO with FocalNet Backbone "dino/dino-swin/dino_focalnet_large_lrf_384_4scale_12ep": { "configs": "projects/dino/configs/dino-focal/dino_focalnet_large_lrf_384_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_focal_large_lrf_384_4scale_12ep.pth" }, "dino/dino-swin/dino_focalnet_large_lrf_384_fl4_4scale_12ep": { "configs": "projects/dino/configs/dino-focal/dino_focalnet_large_lrf_384_fl4_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_focal_large_lrf_384_4scale_12ep.pth" }, "dino/dino-swin/dino_focalnet_large_lrf_384_fl4_5scale_12ep": { "configs": "projects/dino/configs/dino-focal/dino_focalnet_large_lrf_384_fl4_5scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_focalnet_large_lrf_384_fl4_5scale_12ep.pth" }, # Pretrained DINO with ViTDet Backbone "dino/dino-vitdet/dino_vitdet_base_4scale_12ep": { "configs": "projects/dino/configs/dino-vitdet/dino_vitdet_base_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_vitdet_4scale_12ep.pth" }, "dino/dino-vitdet/dino_vitdet_base_4scale_50ep": { "configs": "projects/dino/configs/dino-vitdet/dino_vitdet_base_4scale_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_vitdet_base_4scale_50ep.pth" }, "dino/dino-vitdet/dino_vitdet_large_4scale_12ep": { "configs": "projects/dino/configs/dino-vitdet/dino_vitdet_large_4scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_vitdet_large_4scale_12ep.pth" }, "dino/dino-vitdet/dino_vitdet_large_4scale_50ep": { "configs": "projects/dino/configs/dino-vitdet/dino_vitdet_large_4scale_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.1/dino_vitdet_large_4scale_50ep.pth" }, # H-Deformable-DETR "h_deformable_detr/h_deformable_detr_r50_two_stage_12ep": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_r50_two_stage_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.4.0/h_deformable_detr_r50_two_stage_12ep_modified_train_net.pth" }, "h_deformable_detr/h_deformable_detr_r50_two_stage_12ep(converted)": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_r50_two_stage_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_12eps.pth" }, "h_deformable_detr/h_deformable_detr_r50_two_stage_36ep": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_r50_two_stage_36ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/r50_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth" }, "h_deformable_detr/h_deformable_detr_swin_tiny_two_stage_12ep": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_tiny_two_stage_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_12eps.pth" }, "h_deformable_detr/h_deformable_detr_swin_tiny_two_stage_36ep": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_tiny_two_stage_36ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/swin_tiny_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth" }, "h_deformable_detr/h_deformable_detr_swin_large_two_stage_12ep": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_large_two_stage_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/swin_large_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_12eps.pth" }, "h_deformable_detr/h_deformable_detr_swin_large_two_stage_36ep": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_large_two_stage_36ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/drop_path0.5_swin_large_hybrid_branch_lambda1_group6_t1500_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth" }, "h_deformable_detr/h_deformable_detr_swin_large_two_stage_12ep_900queries": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_large_two_stage_12ep_900queries.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_12eps.pth" }, "h_deformable_detr/h_deformable_detr_swin_large_two_stage_36ep_900queries": { "configs": "projects/h_deformable_detr/configs/h_deformable_detr_swin_large_two_stage_36ep_900queries.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.2.0/drop_path0.5_swin_large_hybrid_branch_lambda1_group6_t1500_n900_dp0_mqs_lft_deformable_detr_plus_iterative_bbox_refinement_plus_plus_two_stage_36eps.pth" }, # DETA "deta/improved_deformable_detr_baseline_50ep": { "configs": "projects/deta/configs/improved_deformable_detr_baseline_50ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_deta_improved_deformable_baseline.pth" }, "deta/deta_r50_5scale_12ep_bs8": { "configs": "projects/deta/configs/deta_r50_5scale_12ep_bs8.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.4.0/deta_r50_5scale_12ep_bs8.pth" }, "deta/deta_r50_5scale_12ep": { "configs": "projects/deta/configs/deta_r50_5scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.4.0/deta_r50_5scale_12ep_hacked_trainer.pth" }, "deta/deta_r50_5scale_no_frozen_backbone": { "configs": "projects/deta/configs/deta_r50_5scale_no_frozen_backbone.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.4.0/deta_r50_5scale_12ep_no_freeze_backbone.pth" }, "deta/deta_r50_5scale_12ep(converted)": { "configs": "projects/deta/configs/deta_r50_5scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_deta_r50_5scale_12ep.pth" }, "deta/DETA-Swin-Large-finetune (converted)": { "configs": "projects/deta/configs/deta_r50_5scale_12ep.py", "ckpts": "https://github.com/IDEA-Research/detrex-storage/releases/download/v0.3.0/converted_deta_swin_o365_finetune.pth" }, } def setup(args): cfg = LazyConfig.load(args.config_file) cfg = LazyConfig.apply_overrides(cfg, args.opts) return cfg def get_parser(): parser = argparse.ArgumentParser(description="detrex demo for visualizing customized inputs") parser.add_argument( "--config-file", default="projects/dino/configs/dino_r50_4scale_12ep.py", metavar="FILE", help="path to config file", ) parser.add_argument("--webcam", action="store_true", help="Take inputs from webcam.") parser.add_argument("--video-input", help="Path to video file.") parser.add_argument( "--input", nargs="+", help="A list of space separated input images; " "or a single glob pattern such as 'directory/*.jpg'", ) parser.add_argument( "--output", help="A file or directory to save output visualizations. " "If not given, will show output in an OpenCV window.", ) parser.add_argument( "--min_size_test", type=int, default=800, help="Size of the smallest side of the image during testing. Set to zero to disable resize in testing.", ) parser.add_argument( "--max_size_test", type=float, default=1333, help="Maximum size of the side of the image during testing.", ) parser.add_argument( "--img_format", type=str, default="RGB", help="The format of the loading images.", ) parser.add_argument( "--metadata_dataset", type=str, default="coco_2017_val", help="The metadata infomation to be used. Default to COCO val metadata.", ) parser.add_argument( "--confidence-threshold", type=float, default=0.5, help="Minimum score for instance predictions to be shown", ) parser.add_argument( "--opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) return parser def test_opencv_video_format(codec, file_ext): with tempfile.TemporaryDirectory(prefix="video_format_test") as dir: filename = os.path.join(dir, "test_file" + file_ext) writer = cv2.VideoWriter( filename=filename, fourcc=cv2.VideoWriter_fourcc(*codec), fps=float(30), frameSize=(10, 10), isColor=True, ) [writer.write(np.zeros((10, 10, 3), np.uint8)) for _ in range(30)] writer.release() if os.path.isfile(filename): return True return False def download_ckpts_and_image(ckpts): print("ckpts:", ckpts) torch.hub.download_url_to_file(ckpts, "dino_deitsmall16_pretrain.pth") def run_detection(input_file, output_file, model_name, input_confidence, device): configs = detrex_model_list[model_name]["configs"] ckpts = detrex_model_list[model_name]["ckpts"] mp.set_start_method("spawn", force=True) args = get_parser().parse_args([ "--config-file", configs, "--input", input_file, "--output", output_file, "--confidence-threshold", str(input_confidence), "--opts", "train.init_checkpoint=" + ckpts ]) setup_logger(name="fvcore") logger = setup_logger() logger.info("Arguments: " + str(args)) cfg = setup(args) cfg.model.device = device cfg.train.device = device model = instantiate(cfg.model) model.to(cfg.train.device) checkpointer = DetectionCheckpointer(model) checkpointer.load(cfg.train.init_checkpoint) model.eval() demo = VisualizationDemo( model=model, min_size_test=args.min_size_test, max_size_test=args.max_size_test, img_format=args.img_format, metadata_dataset=args.metadata_dataset, ) if args.input: if len(args.input) == 1: args.input = glob.glob(os.path.expanduser(args.input[0])) assert args.input, "The input path(s) was not found" for path in tqdm.tqdm(args.input, disable=not args.output): # use PIL, to be consistent with evaluation img = read_image(path, format="BGR") start_time = time.time() predictions, visualized_output = demo.run_on_image(img, args.confidence_threshold) logger.info( "{}: {} in {:.2f}s".format( path, "detected {} instances".format(len(predictions["instances"])) if "instances" in predictions else "finished", time.time() - start_time, ) ) if args.output: if os.path.isdir(args.output): assert os.path.isdir(args.output), args.output out_filename = os.path.join(args.output, os.path.basename(path)) else: assert len(args.input) == 1, "Please specify a directory with args.output" out_filename = args.output visualized_output.save(out_filename) def download_test_img(): import shutil torch.hub.download_url_to_file( 'https://github.com/isLinXu/issues/files/12658779/projects.zip', 'projects.zip') # Images torch.hub.download_url_to_file( 'https://user-images.githubusercontent.com/59380685/268517006-d8d4d3b3-964a-4f4d-8458-18c7eb75a4f2.jpg', '000000502136.jpg') shutil.unpack_archive('projects.zip', './', 'zip') def detect_image(input_image, model_name, input_confidence, device): input_dir = "input.jpg" input_image.save(input_dir) output_image = "output.jpg" run_detection(input_dir, output_image, model_name, input_confidence, device) return output_image if __name__ == '__main__': input_image = gr.inputs.Image(type='pil', label="Input Image") input_model_name = gr.inputs.Dropdown(list(detrex_model_list.keys()), label="Model Name", default="dab_detr/dab_detr_r50_50ep") input_confidence = gr.inputs.Slider(minimum=0.0, maximum=1.0, step=0.01, default=0.25, label="Confidence Threshold") input_device = gr.inputs.Radio(["cpu", "cuda"], label="Device", default="cpu") output_image = gr.outputs.Image(type='pil', label="Output Image") download_test_img() examples = [["000000502136.jpg", "dab_detr/dab_detr_r50_50ep", 0.25, "cpu"]] title = "🦖detrex: Benchmarking Detection Transformers web demo" description = "
detrex detrex detrex 是一个开源工具箱,提供最先进的基于 Transformer 的检测算法。它建立在Detectron2之上,其模块设计部分借鉴了MMDetection和DETR。非常感谢他们组织良好的代码。主分支适用于Pytorch 1.10+或更高版本(我们推荐Pytorch 1.12)。" \ "detrex is a research platform for DETR-based object detection, segmentation, pose estimation and other visual recognition tasks.
" article = "" \ "" image_interface = gr.Interface(detect_image, inputs=[input_image, input_model_name, input_confidence, input_device], outputs=output_image,examples=examples, title=title, article=article, description=description) image_interface.launch()