Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, VitsModel | |
from nemo.collections.asr.models import EncDecMultiTaskModel | |
# load speech to text model | |
canary_model = EncDecMultiTaskModel.from_pretrained('nvidia/canary-1b') | |
canary_model.eval() | |
canary_model.to('cpu') | |
# update decode params | |
canary_model.change_decoding_strategy(None) | |
decode_cfg = canary_model.cfg.decoding | |
decode_cfg.beam.beam_size = 1 | |
canary_model.change_decoding_strategy(decode_cfg) | |
# Load the text processing model and tokenizer | |
proc_tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct") | |
proc_model = AutoModelForCausalLM.from_pretrained( | |
"microsoft/Phi-3-mini-4k-instruct", | |
trust_remote_code=True, | |
) | |
proc_model.eval() | |
proc_model.to('cpu') | |
# Load the TTS model | |
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng") | |
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng") | |
tts_model.eval() | |
tts_model.to('cpu') | |
def process_speech(speech): | |
# Convert the speech to text | |
transcription = canary_model.transcribe( | |
speech, | |
logprobs=False, | |
) | |
# Process the text | |
inputs = proc_tokenizer.encode(transcription + proc_tokenizer.eos_token, return_tensors='pt') | |
outputs = proc_model.generate(inputs, max_length=100, temperature=0.7, pad_token_id=proc_tokenizer.eos_token_id) | |
text = proc_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
processed_text = tts_tokenizer(text, return_tensors="pt") | |
# Convert the processed text to speech | |
with torch.no_grad(): | |
audio = tts_model(**inputs).waveform | |
return audio | |
iface = gr.Interface(fn=process_speech, inputs=gr.Audio(source="microphone"), outputs="audio") | |
iface.launch() | |