Chatty_Ashe / Chatty_Ashe.py
gdnartea's picture
Create Chatty_Ashe.py
c5f8e1d verified
raw
history blame
1.84 kB
import gradio as gr
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, GPT2LMHeadModel, GPT2Tokenizer, VitsProcessor, VitsForConditionalGeneration
# Load the ASR model and processor
asr_processor = Wav2Vec2Processor.from_pretrained("/path/to/canary/processor")
asr_model = Wav2Vec2ForCTC.from_pretrained("/path/to/canary/model")
# Load the text processing model and tokenizer
proc_tokenizer = GPT2Tokenizer.from_pretrained("/path/to/phi3/tokenizer")
proc_model = GPT2LMHeadModel.from_pretrained("/path/to/phi3/model")
# Load the TTS model and processor
tts_processor = VitsProcessor.from_pretrained("facebook/vits-base")
tts_model = VitsForConditionalGeneration.from_pretrained("facebook/vits-base")
def process_speech(speech):
# Convert the speech to text
inputs = asr_processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = asr_model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = asr_processor.decode(predicted_ids[0])
# Process the text
inputs = proc_tokenizer.encode(transcription + proc_tokenizer.eos_token, return_tensors='pt')
outputs = proc_model.generate(inputs, max_length=100, temperature=0.7, pad_token_id=proc_tokenizer.eos_token_id)
processed_text = proc_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Convert the processed text to speech
inputs = tts_processor(processed_text, return_tensors="pt")
with torch.no_grad():
logits = tts_model(inputs["input_ids"]).logits
predicted_ids = torch.argmax(logits, dim=-1)
audio = tts_processor.decode(predicted_ids)
return audio
iface = gr.Interface(fn=process_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio")
iface.launch()