import gradio as gr from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor, GPT2LMHeadModel, GPT2Tokenizer, VitsProcessor, VitsForConditionalGeneration # Load the ASR model and processor asr_processor = Wav2Vec2Processor.from_pretrained("/path/to/canary/processor") asr_model = Wav2Vec2ForCTC.from_pretrained("/path/to/canary/model") # Load the text processing model and tokenizer proc_tokenizer = GPT2Tokenizer.from_pretrained("/path/to/phi3/tokenizer") proc_model = GPT2LMHeadModel.from_pretrained("/path/to/phi3/model") # Load the TTS model and processor tts_processor = VitsProcessor.from_pretrained("facebook/vits-base") tts_model = VitsForConditionalGeneration.from_pretrained("facebook/vits-base") def process_speech(speech): # Convert the speech to text inputs = asr_processor(speech, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = asr_model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) transcription = asr_processor.decode(predicted_ids[0]) # Process the text inputs = proc_tokenizer.encode(transcription + proc_tokenizer.eos_token, return_tensors='pt') outputs = proc_model.generate(inputs, max_length=100, temperature=0.7, pad_token_id=proc_tokenizer.eos_token_id) processed_text = proc_tokenizer.decode(outputs[0], skip_special_tokens=True) # Convert the processed text to speech inputs = tts_processor(processed_text, return_tensors="pt") with torch.no_grad(): logits = tts_model(inputs["input_ids"]).logits predicted_ids = torch.argmax(logits, dim=-1) audio = tts_processor.decode(predicted_ids) return audio iface = gr.Interface(fn=process_speech, inputs=gr.inputs.Audio(source="microphone"), outputs="audio") iface.launch()