osanseviero
commited on
Commit
•
51cf19b
1
Parent(s):
cbc7df9
Update app.py
Browse files
app.py
CHANGED
@@ -14,40 +14,59 @@ Adjust the sliders to see how each parameter influences the token probabilities.
|
|
14 |
To learn more about LLM generation, check out the early release of [Hands-On Generative AI with Transformers and Diffusion Models](https://learning.oreilly.com/library/view/hands-on-generative-ai/9781098149239/).
|
15 |
"""
|
16 |
|
17 |
-
def get_initial_distribution(seed=42):
|
18 |
np.random.seed(seed) # For reproducibility
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
return token_probs
|
22 |
|
23 |
def adjust_distribution(temperature, top_k, top_p, initial_probs):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
# Plotting the probabilities
|
53 |
plt.figure(figsize=(10, 6))
|
|
|
14 |
To learn more about LLM generation, check out the early release of [Hands-On Generative AI with Transformers and Diffusion Models](https://learning.oreilly.com/library/view/hands-on-generative-ai/9781098149239/).
|
15 |
"""
|
16 |
|
17 |
+
def get_initial_distribution(num_tokens=10, min_prob=1e-3, seed=42):
|
18 |
np.random.seed(seed) # For reproducibility
|
19 |
+
|
20 |
+
# Ensure each token has at least `min_prob`
|
21 |
+
baseline_probs = np.full(num_tokens, min_prob)
|
22 |
+
remaining_prob = 1.0 - num_tokens * min_prob
|
23 |
+
|
24 |
+
# Distribute the remaining probability randomly
|
25 |
+
if remaining_prob > 0:
|
26 |
+
random_probs = np.random.rand(num_tokens)
|
27 |
+
random_probs /= np.sum(random_probs) # Normalize to sum to 1
|
28 |
+
token_probs = baseline_probs + remaining_prob * random_probs
|
29 |
+
else:
|
30 |
+
# If min_prob is too high, adjust probabilities to sum to 1
|
31 |
+
token_probs = baseline_probs
|
32 |
+
token_probs /= np.sum(token_probs)
|
33 |
+
|
34 |
return token_probs
|
35 |
|
36 |
def adjust_distribution(temperature, top_k, top_p, initial_probs):
|
37 |
+
if temperature == 0:
|
38 |
+
# Greedy sampling: pick the token with the highest probability
|
39 |
+
max_index = np.argmax(initial_probs)
|
40 |
+
token_probs = np.zeros_like(initial_probs)
|
41 |
+
token_probs[max_index] = 1.0
|
42 |
+
else:
|
43 |
+
# Apply temperature scaling
|
44 |
+
token_probs = np.exp(np.log(initial_probs) / temperature)
|
45 |
+
token_probs /= np.sum(token_probs)
|
46 |
+
|
47 |
+
# Apply Top-K filtering
|
48 |
+
if top_k > 0:
|
49 |
+
top_k_indices = np.argsort(token_probs)[-top_k:]
|
50 |
+
top_k_probs = np.zeros_like(token_probs)
|
51 |
+
top_k_probs[top_k_indices] = token_probs[top_k_indices]
|
52 |
+
top_k_probs /= np.sum(top_k_probs) # Normalize after filtering
|
53 |
+
token_probs = top_k_probs
|
54 |
+
|
55 |
+
# Apply top_p (nucleus) filtering
|
56 |
+
if top_p < 1.0:
|
57 |
+
# Sort probabilities in descending order and compute cumulative sum
|
58 |
+
sorted_indices = np.argsort(token_probs)[::-1]
|
59 |
+
cumulative_probs = np.cumsum(token_probs[sorted_indices])
|
60 |
+
|
61 |
+
# Find the cutoff index for nucleus sampling
|
62 |
+
cutoff_index = np.searchsorted(cumulative_probs, top_p) + 1
|
63 |
+
|
64 |
+
# Get the indices that meet the threshold
|
65 |
+
top_p_indices = sorted_indices[:cutoff_index]
|
66 |
+
top_p_probs = np.zeros_like(token_probs)
|
67 |
+
top_p_probs[top_p_indices] = token_probs[top_p_indices]
|
68 |
+
top_p_probs /= np.sum(top_p_probs) # Normalize after filtering
|
69 |
+
token_probs = top_p_probs
|
70 |
|
71 |
# Plotting the probabilities
|
72 |
plt.figure(figsize=(10, 6))
|