File size: 3,715 Bytes
57cd4b7
e448014
f2c9828
 
e448014
 
f2c9828
 
3be0591
57cd4b7
 
 
f2c9828
 
 
3be0591
f2c9828
 
 
3be0591
 
f2c9828
 
 
 
 
 
 
 
 
 
 
 
 
 
57cd4b7
e448014
57cd4b7
f2c9828
 
 
 
 
 
57cd4b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3be0591
 
57cd4b7
 
3be0591
f2c9828
57cd4b7
 
 
 
 
 
 
 
f2c9828
 
e448014
 
 
793503d
 
 
 
f2c9828
 
 
 
 
e448014
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c9828
793503d
 
 
 
 
 
 
 
f2c9828
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import os
import shutil
import subprocess

import gradio as gr

from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard

from textwrap import dedent

api = HfApi()

def process_model(model_id, q_method, hf_token):
    
    MODEL_NAME = model_id.split('/')[-1]
    fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"

    username = whoami(hf_token)["name"]
    
    snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False)
    print("Model downloaded successully!")
    
    fp16_conversion = f"python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}"
    subprocess.run(fp16_conversion, shell=True)
    print("Model converted to fp16 successully!")

    qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf"
    quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
    subprocess.run(quantise_ggml, shell=True)
    print("Quantised successfully!")

    # Create empty repo
    repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF"
    repo_url = create_repo(
        repo_id = repo_id,
        repo_type="model",
        exist_ok=True,
        token=hf_token
    )
    print("Empty repo created successfully!")


    card = ModelCard.load(model_id)
    card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"]
    card.text = dedent(
        f"""
        # {upload_repo}
        This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp.
        Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
        ## Use with llama.cpp

        ```bash
        brew install ggerganov/ggerganov/llama.cpp
        ```

        ```bash
        llama-cli --hf-repo {repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is "
        ```
        """
    )
    card.save(os.path.join(MODEL_NAME, "README-new.md"))
    
    api.upload_file(
        path_or_fileobj=qtype,
        path_in_repo=qtype.split("/")[-1],
        repo_id=repo_id,
        repo_type="model",
    )

    api.upload_file(
        path_or_fileobj=f"{MODEL_NAME}/README-new.md",
        path_in_repo=README.md,
        repo_id=repo_id,
        repo_type="model",
    )
    
    print("Uploaded successfully!")

    shutil.rmtree(MODEL_NAME)
    print("Folder cleaned up successfully!")

    return (
        f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
        "llama.png",
    )    

# Create Gradio interface
iface = gr.Interface(
    fn=process_model, 
    inputs=[
        gr.Textbox(
            lines=1, 
            label="Hub Model ID",
            info="Model repo ID"
        ),
        gr.Dropdown(
            ["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], 
            label="Quantization Method", 
            info="GGML quantisation type"
        ),
        gr.Textbox(
            lines=1, 
            label="HF Write Token",
            info="https://hf.co/settings/token"
        )
    ], 
    outputs=[
        gr.Markdown(label="output"),
        gr.Image(show_label=False),
    ],
    title="Create your own GGUF Quants!",
    description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.",
    article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>",
    
)

# Launch the interface
iface.launch(debug=True)