Spaces:
Running
on
A10G
Running
on
A10G
Better isolation + various improvements (#133)
Browse files- better isolation, various improvements (27d54e6a4480d8e613d120141ce2dc345f73d4f8)
- resolve conflict (213d2a14ce4e1123cd6653ab0203ad9778f165de)
- .dockerignore +2 -1
- .gitignore +1 -0
- app.py +216 -169
.dockerignore
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
/downloads
|
2 |
-
/llama.cpp
|
|
|
|
1 |
/downloads
|
2 |
+
/llama.cpp
|
3 |
+
/outputs
|
.gitignore
CHANGED
@@ -164,3 +164,4 @@ cython_debug/
|
|
164 |
/downloads
|
165 |
!/downloads/.keep
|
166 |
/llama.cpp
|
|
|
|
164 |
/downloads
|
165 |
!/downloads/.keep
|
166 |
/llama.cpp
|
167 |
+
/outputs
|
app.py
CHANGED
@@ -12,21 +12,34 @@ from textwrap import dedent
|
|
12 |
from apscheduler.schedulers.background import BackgroundScheduler
|
13 |
|
14 |
|
|
|
15 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
raise Exception(f"Model file not found: {model_path}")
|
27 |
|
28 |
print("Running imatrix command...")
|
29 |
-
process = subprocess.Popen(imatrix_command, shell=
|
30 |
|
31 |
try:
|
32 |
process.wait(timeout=60) # added wait
|
@@ -39,36 +52,54 @@ def generate_importance_matrix(model_path, train_data_path):
|
|
39 |
print("Imatrix proc still didn't term. Forecfully terming process...")
|
40 |
process.kill()
|
41 |
|
42 |
-
os.chdir("..")
|
43 |
-
|
44 |
print("Importance matrix generation completed.")
|
45 |
|
46 |
-
def split_upload_model(model_path, repo_id, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
|
|
|
|
|
|
47 |
if oauth_token.token is None:
|
48 |
raise ValueError("You have to be logged in.")
|
49 |
|
50 |
-
split_cmd =
|
|
|
|
|
|
|
51 |
if split_max_size:
|
52 |
-
split_cmd
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
print(f"Split command: {split_cmd}")
|
56 |
|
57 |
-
result = subprocess.run(split_cmd, shell=
|
58 |
print(f"Split command stdout: {result.stdout}")
|
59 |
print(f"Split command stderr: {result.stderr}")
|
60 |
|
61 |
if result.returncode != 0:
|
62 |
-
|
|
|
63 |
print("Model split successfully!")
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
if sharded_model_files:
|
68 |
print(f"Sharded model files: {sharded_model_files}")
|
69 |
api = HfApi(token=oauth_token.token)
|
70 |
for file in sharded_model_files:
|
71 |
-
file_path = os.path.join(
|
72 |
print(f"Uploading file: {file_path}")
|
73 |
try:
|
74 |
api.upload_file(
|
@@ -87,7 +118,6 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
87 |
if oauth_token.token is None:
|
88 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
89 |
model_name = model_id.split('/')[-1]
|
90 |
-
fp16 = f"{model_name}.fp16.gguf"
|
91 |
|
92 |
try:
|
93 |
api = HfApi(token=oauth_token.token)
|
@@ -111,160 +141,177 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
111 |
if not os.path.exists("downloads"):
|
112 |
os.makedirs("downloads")
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
if result.returncode != 0:
|
133 |
-
|
134 |
-
|
135 |
-
print(f"
|
|
|
136 |
|
137 |
-
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
184 |
-
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
185 |
-
|
186 |
-
## Use with llama.cpp
|
187 |
-
Install llama.cpp through brew (works on Mac and Linux)
|
188 |
-
|
189 |
-
```bash
|
190 |
-
brew install llama.cpp
|
191 |
-
|
192 |
-
```
|
193 |
-
Invoke the llama.cpp server or the CLI.
|
194 |
-
|
195 |
-
### CLI:
|
196 |
-
```bash
|
197 |
-
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
198 |
-
```
|
199 |
-
|
200 |
-
### Server:
|
201 |
-
```bash
|
202 |
-
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
203 |
-
```
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
```
|
223 |
-
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
224 |
-
```
|
225 |
-
"""
|
226 |
-
)
|
227 |
-
card.save(f"README.md")
|
228 |
-
|
229 |
-
if split_model:
|
230 |
-
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
231 |
-
else:
|
232 |
-
try:
|
233 |
-
print(f"Uploading quantized model: {quantized_gguf_path}")
|
234 |
-
api.upload_file(
|
235 |
-
path_or_fileobj=quantized_gguf_path,
|
236 |
-
path_in_repo=quantized_gguf_name,
|
237 |
-
repo_id=new_repo_id,
|
238 |
-
)
|
239 |
-
except Exception as e:
|
240 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
241 |
-
|
242 |
-
|
243 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
244 |
-
if os.path.isfile(imatrix_path):
|
245 |
-
try:
|
246 |
-
print(f"Uploading imatrix.dat: {imatrix_path}")
|
247 |
-
api.upload_file(
|
248 |
-
path_or_fileobj=imatrix_path,
|
249 |
-
path_in_repo="imatrix.dat",
|
250 |
-
repo_id=new_repo_id,
|
251 |
-
)
|
252 |
-
except Exception as e:
|
253 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
254 |
|
255 |
-
|
256 |
-
path_or_fileobj=f"README.md",
|
257 |
-
path_in_repo=f"README.md",
|
258 |
-
repo_id=new_repo_id,
|
259 |
-
)
|
260 |
-
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
261 |
|
262 |
return (
|
263 |
-
f'<h1>✅ DONE</h1><br
|
264 |
"llama.png",
|
265 |
)
|
266 |
except Exception as e:
|
267 |
-
return (f
|
268 |
|
269 |
|
270 |
css="""/* Custom CSS to allow scrolling */
|
@@ -332,7 +379,7 @@ with gr.Blocks(css=css) as demo:
|
|
332 |
|
333 |
split_max_size = gr.Textbox(
|
334 |
label="Max File Size",
|
335 |
-
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
336 |
visible=False
|
337 |
)
|
338 |
|
|
|
12 |
from apscheduler.schedulers.background import BackgroundScheduler
|
13 |
|
14 |
|
15 |
+
# used for restarting the space
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
+
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
|
18 |
+
|
19 |
+
# escape HTML for logging
|
20 |
+
def escape(s: str) -> str:
|
21 |
+
s = s.replace("&", "&") # Must be done first!
|
22 |
+
s = s.replace("<", "<")
|
23 |
+
s = s.replace(">", ">")
|
24 |
+
s = s.replace('"', """)
|
25 |
+
s = s.replace("\n", "<br/>")
|
26 |
+
return s
|
27 |
+
|
28 |
+
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
|
29 |
+
imatrix_command = [
|
30 |
+
"./llama.cpp/llama-imatrix",
|
31 |
+
"-m", model_path,
|
32 |
+
"-f", train_data_path,
|
33 |
+
"-ngl", "99",
|
34 |
+
"--output-frequency", "10",
|
35 |
+
"-o", output_path,
|
36 |
+
]
|
37 |
+
|
38 |
+
if not os.path.isfile(model_path):
|
39 |
raise Exception(f"Model file not found: {model_path}")
|
40 |
|
41 |
print("Running imatrix command...")
|
42 |
+
process = subprocess.Popen(imatrix_command, shell=False)
|
43 |
|
44 |
try:
|
45 |
process.wait(timeout=60) # added wait
|
|
|
52 |
print("Imatrix proc still didn't term. Forecfully terming process...")
|
53 |
process.kill()
|
54 |
|
|
|
|
|
55 |
print("Importance matrix generation completed.")
|
56 |
|
57 |
+
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
|
58 |
+
print(f"Model path: {model_path}")
|
59 |
+
print(f"Output dir: {outdir}")
|
60 |
+
|
61 |
if oauth_token.token is None:
|
62 |
raise ValueError("You have to be logged in.")
|
63 |
|
64 |
+
split_cmd = [
|
65 |
+
"./llama.cpp/llama-gguf-split",
|
66 |
+
"--split",
|
67 |
+
]
|
68 |
if split_max_size:
|
69 |
+
split_cmd.append("--split-max-size")
|
70 |
+
split_cmd.append(split_max_size)
|
71 |
+
else:
|
72 |
+
split_cmd.append("--split-max-tensors")
|
73 |
+
split_cmd.append(str(split_max_tensors))
|
74 |
+
|
75 |
+
# args for output
|
76 |
+
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
|
77 |
+
split_cmd.append(model_path)
|
78 |
+
split_cmd.append(model_path_prefix)
|
79 |
+
|
80 |
print(f"Split command: {split_cmd}")
|
81 |
|
82 |
+
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
|
83 |
print(f"Split command stdout: {result.stdout}")
|
84 |
print(f"Split command stderr: {result.stderr}")
|
85 |
|
86 |
if result.returncode != 0:
|
87 |
+
stderr_str = result.stderr.decode("utf-8")
|
88 |
+
raise Exception(f"Error splitting the model: {stderr_str}")
|
89 |
print("Model split successfully!")
|
90 |
+
|
91 |
+
# remove the original model file if needed
|
92 |
+
if os.path.exists(model_path):
|
93 |
+
os.remove(model_path)
|
94 |
+
|
95 |
+
model_file_prefix = model_path_prefix.split('/')[-1]
|
96 |
+
print(f"Model file name prefix: {model_file_prefix}")
|
97 |
+
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
|
98 |
if sharded_model_files:
|
99 |
print(f"Sharded model files: {sharded_model_files}")
|
100 |
api = HfApi(token=oauth_token.token)
|
101 |
for file in sharded_model_files:
|
102 |
+
file_path = os.path.join(outdir, file)
|
103 |
print(f"Uploading file: {file_path}")
|
104 |
try:
|
105 |
api.upload_file(
|
|
|
118 |
if oauth_token.token is None:
|
119 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
120 |
model_name = model_id.split('/')[-1]
|
|
|
121 |
|
122 |
try:
|
123 |
api = HfApi(token=oauth_token.token)
|
|
|
141 |
if not os.path.exists("downloads"):
|
142 |
os.makedirs("downloads")
|
143 |
|
144 |
+
if not os.path.exists("outputs"):
|
145 |
+
os.makedirs("outputs")
|
146 |
+
|
147 |
+
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
|
148 |
+
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
|
149 |
+
|
150 |
+
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
|
151 |
+
# Keep the model name as the dirname so the model name metadata is populated correctly
|
152 |
+
local_dir = Path(tmpdir)/model_name
|
153 |
+
print(local_dir)
|
154 |
+
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
155 |
+
print("Model downloaded successfully!")
|
156 |
+
print(f"Current working directory: {os.getcwd()}")
|
157 |
+
print(f"Model directory contents: {os.listdir(local_dir)}")
|
158 |
+
|
159 |
+
config_dir = local_dir/"config.json"
|
160 |
+
adapter_config_dir = local_dir/"adapter_config.json"
|
161 |
+
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
|
162 |
+
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')
|
163 |
+
|
164 |
+
result = subprocess.run([
|
165 |
+
"python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16
|
166 |
+
], shell=False, capture_output=True)
|
167 |
+
print(result)
|
168 |
+
if result.returncode != 0:
|
169 |
+
stderr_str = result.stderr.decode("utf-8")
|
170 |
+
raise Exception(f"Error converting to fp16: {stderr_str}")
|
171 |
+
print("Model converted to fp16 successfully!")
|
172 |
+
print(f"Converted model path: {fp16}")
|
173 |
+
|
174 |
+
imatrix_path = Path(outdir)/"imatrix.dat"
|
175 |
+
|
176 |
+
if use_imatrix:
|
177 |
+
if train_data_file:
|
178 |
+
train_data_path = train_data_file.name
|
179 |
+
else:
|
180 |
+
train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset
|
181 |
+
|
182 |
+
print(f"Training data file path: {train_data_path}")
|
183 |
+
|
184 |
+
if not os.path.isfile(train_data_path):
|
185 |
+
raise Exception(f"Training data file not found: {train_data_path}")
|
186 |
+
|
187 |
+
generate_importance_matrix(fp16, train_data_path, imatrix_path)
|
188 |
+
else:
|
189 |
+
print("Not using imatrix quantization.")
|
190 |
+
|
191 |
+
# Quantize the model
|
192 |
+
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
193 |
+
quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
|
194 |
+
if use_imatrix:
|
195 |
+
quantise_ggml = [
|
196 |
+
"./llama.cpp/llama-quantize",
|
197 |
+
"--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
|
198 |
+
]
|
199 |
+
else:
|
200 |
+
quantise_ggml = [
|
201 |
+
"./llama.cpp/llama-quantize",
|
202 |
+
fp16, quantized_gguf_path, q_method
|
203 |
+
]
|
204 |
+
result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
|
205 |
if result.returncode != 0:
|
206 |
+
stderr_str = result.stderr.decode("utf-8")
|
207 |
+
raise Exception(f"Error quantizing: {stderr_str}")
|
208 |
+
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
209 |
+
print(f"Quantized model path: {quantized_gguf_path}")
|
210 |
|
211 |
+
# Create empty repo
|
212 |
+
username = whoami(oauth_token.token)["name"]
|
213 |
+
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
214 |
+
new_repo_id = new_repo_url.repo_id
|
215 |
+
print("Repo created successfully!", new_repo_url)
|
216 |
|
217 |
+
try:
|
218 |
+
card = ModelCard.load(model_id, token=oauth_token.token)
|
219 |
+
except:
|
220 |
+
card = ModelCard("")
|
221 |
+
if card.data.tags is None:
|
222 |
+
card.data.tags = []
|
223 |
+
card.data.tags.append("llama-cpp")
|
224 |
+
card.data.tags.append("gguf-my-repo")
|
225 |
+
card.data.base_model = model_id
|
226 |
+
card.text = dedent(
|
227 |
+
f"""
|
228 |
+
# {new_repo_id}
|
229 |
+
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
230 |
+
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
|
231 |
+
|
232 |
+
## Use with llama.cpp
|
233 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
234 |
+
|
235 |
+
```bash
|
236 |
+
brew install llama.cpp
|
237 |
+
|
238 |
+
```
|
239 |
+
Invoke the llama.cpp server or the CLI.
|
240 |
+
|
241 |
+
### CLI:
|
242 |
+
```bash
|
243 |
+
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
244 |
+
```
|
245 |
+
|
246 |
+
### Server:
|
247 |
+
```bash
|
248 |
+
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
249 |
+
```
|
250 |
+
|
251 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
252 |
+
|
253 |
+
Step 1: Clone llama.cpp from GitHub.
|
254 |
+
```
|
255 |
+
git clone https://github.com/ggerganov/llama.cpp
|
256 |
+
```
|
257 |
+
|
258 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
259 |
+
```
|
260 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
261 |
+
```
|
262 |
+
|
263 |
+
Step 3: Run inference through the main binary.
|
264 |
+
```
|
265 |
+
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is"
|
266 |
+
```
|
267 |
+
or
|
268 |
+
```
|
269 |
+
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
270 |
+
```
|
271 |
+
"""
|
272 |
+
)
|
273 |
+
readme_path = Path(outdir)/"README.md"
|
274 |
+
card.save(readme_path)
|
275 |
|
276 |
+
if split_model:
|
277 |
+
split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
278 |
+
else:
|
279 |
+
try:
|
280 |
+
print(f"Uploading quantized model: {quantized_gguf_path}")
|
281 |
+
api.upload_file(
|
282 |
+
path_or_fileobj=quantized_gguf_path,
|
283 |
+
path_in_repo=quantized_gguf_name,
|
284 |
+
repo_id=new_repo_id,
|
285 |
+
)
|
286 |
+
except Exception as e:
|
287 |
+
raise Exception(f"Error uploading quantized model: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
288 |
|
289 |
+
if os.path.isfile(imatrix_path):
|
290 |
+
try:
|
291 |
+
print(f"Uploading imatrix.dat: {imatrix_path}")
|
292 |
+
api.upload_file(
|
293 |
+
path_or_fileobj=imatrix_path,
|
294 |
+
path_in_repo="imatrix.dat",
|
295 |
+
repo_id=new_repo_id,
|
296 |
+
)
|
297 |
+
except Exception as e:
|
298 |
+
raise Exception(f"Error uploading imatrix.dat: {e}")
|
299 |
+
|
300 |
+
api.upload_file(
|
301 |
+
path_or_fileobj=readme_path,
|
302 |
+
path_in_repo="README.md",
|
303 |
+
repo_id=new_repo_id,
|
304 |
+
)
|
305 |
+
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
+
# end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
return (
|
310 |
+
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
|
311 |
"llama.png",
|
312 |
)
|
313 |
except Exception as e:
|
314 |
+
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
|
315 |
|
316 |
|
317 |
css="""/* Custom CSS to allow scrolling */
|
|
|
379 |
|
380 |
split_max_size = gr.Textbox(
|
381 |
label="Max File Size",
|
382 |
+
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
|
383 |
visible=False
|
384 |
)
|
385 |
|