Spaces:
Sleeping
Sleeping
ghostofdivinity
commited on
Commit
•
71e82b9
1
Parent(s):
4854ddd
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,71 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import IPython.display as ipd
|
5 |
|
6 |
+
# Generate new kick drum samples
|
7 |
+
generator.eval()
|
8 |
+
with torch.no_grad():
|
9 |
+
for i in range(num_generated_samples):
|
10 |
+
noise = torch.randn(1, latent_dim).to(device)
|
11 |
+
generated_sample = generator(noise).squeeze().cpu()
|
12 |
|
13 |
+
# Save the generated sample
|
14 |
+
output_filename = f"generated_kick_{i+1}.wav"
|
15 |
+
torchaudio.save(output_filename, generated_sample.unsqueeze(0), 16000)
|
16 |
+
|
17 |
+
# Play the generated sample
|
18 |
+
print(f"Generated Sample {i+1}:")
|
19 |
+
display(ipd.Audio(output_filename))
|
20 |
+
|
21 |
+
# Load the saved generator model
|
22 |
+
class Generator(nn.Module):
|
23 |
+
def __init__(self, latent_dim):
|
24 |
+
super(Generator, self).__init__()
|
25 |
+
self.generator = nn.Sequential(
|
26 |
+
nn.Linear(latent_dim, 1024),
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.Linear(1024, 4096),
|
29 |
+
nn.ReLU(),
|
30 |
+
nn.Linear(4096, 8192),
|
31 |
+
nn.Tanh()
|
32 |
+
)
|
33 |
+
|
34 |
+
def forward(self, x):
|
35 |
+
return self.generator(x)
|
36 |
+
|
37 |
+
latent_dim = 100
|
38 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
39 |
+
generator = Generator(latent_dim).to(device)
|
40 |
+
generator_model_path = "generator_model.pkl"
|
41 |
+
generator.load_state_dict(torch.load(generator_model_path))
|
42 |
+
|
43 |
+
def generate_kick_drums():
|
44 |
+
# Define the number of samples you want to generate
|
45 |
+
num_generated_samples = 3
|
46 |
+
output_files = []
|
47 |
+
|
48 |
+
# Generate new kick drum samples
|
49 |
+
generator.eval()
|
50 |
+
with torch.no_grad():
|
51 |
+
for i in range(num_generated_samples):
|
52 |
+
noise = torch.randn(1, latent_dim).to(device)
|
53 |
+
generated_sample = generator(noise).squeeze().cpu()
|
54 |
+
|
55 |
+
# Save the generated sample
|
56 |
+
output_filename = f"generated_kick_{i+1}.wav"
|
57 |
+
torchaudio.save(output_filename, generated_sample.unsqueeze(0), 16000)
|
58 |
+
|
59 |
+
output_files.append(output_filename)
|
60 |
+
|
61 |
+
return tuple(output_files)
|
62 |
+
|
63 |
+
def gradio_interface():
|
64 |
+
generate_button = gr.Interface(fn=generate_kick_drums,
|
65 |
+
inputs=None,
|
66 |
+
outputs=[gr.Audio(type='filepath', label=f"generated_kick_{i+1}") for i in range(3)],
|
67 |
+
live=True)
|
68 |
+
generate_button.launch(debug=True)
|
69 |
+
|
70 |
+
# Run the Gradio interface
|
71 |
+
gradio_interface()
|