import os import cv2 import numpy as np import torch import gradio as gr import spaces from gradio.themes.base import Base from gradio.themes.utils import colors, fonts, sizes from PIL import Image, ImageOps from transformers import AutoModelForImageSegmentation from torchvision import transforms class WhiteTheme(Base): def __init__( self, *, primary_hue: colors.Color | str = colors.orange, font: fonts.Font | str | tuple[fonts.Font | str, ...] = ( fonts.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif", ), font_mono: fonts.Font | str | tuple[fonts.Font | str, ...] = ( fonts.GoogleFont("Inter"), "ui-monospace", "system-ui", "monospace", ) ): super().__init__( primary_hue=primary_hue, font=font, font_mono=font_mono, ) self.set( # Light mode specific colors background_fill_primary="*primary_50", background_fill_secondary="white", border_color_primary="*primary_300", # General colors that should stay constant body_background_fill="white", body_background_fill_dark="white", block_background_fill="white", block_background_fill_dark="white", panel_background_fill="white", panel_background_fill_dark="white", body_text_color="black", body_text_color_dark="black", block_label_text_color="black", block_label_text_color_dark="black", block_border_color="white", panel_border_color="white", input_border_color="lightgray", input_background_fill="white", input_background_fill_dark="white", shadow_drop="none" ) torch.set_float32_matmul_precision('high') torch.jit.script = lambda f: f device = "cuda" if torch.cuda.is_available() else "cpu" def refine_foreground(image, mask, r=90): if mask.size != image.size: mask = mask.resize(image.size) image = np.array(image) / 255.0 mask = np.array(mask) / 255.0 estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) return image_masked def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): alpha = alpha[:, :, None] F, blur_B = FB_blur_fusion_foreground_estimator( image, image, image, alpha, r) return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): if isinstance(image, Image.Image): image = np.array(image) / 255.0 blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] blurred_FA = cv2.blur(F * alpha, (r, r)) blurred_F = blurred_FA / (blurred_alpha + 1e-5) blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) F = blurred_F + alpha * (image - alpha * blurred_F - (1 - alpha) * blurred_B) F = np.clip(F, 0, 1) return F, blurred_B class ImagePreprocessor(): def __init__(self, resolution=(1024, 1024)) -> None: self.transform_image = transforms.Compose([ transforms.Resize(resolution), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image: Image.Image) -> torch.Tensor: image = self.transform_image(image) return image # Load the model birefnet = AutoModelForImageSegmentation.from_pretrained( 'zhengpeng7/BiRefNet-matting', trust_remote_code=True) birefnet.to(device) birefnet.eval() def remove_background_wrapper(image): if image is None: raise gr.Error("Please upload an image.") image_ori = Image.fromarray(image).convert('RGB') foreground, background, pred_pil, reverse_mask = remove_background(image_ori) return foreground, background, pred_pil, reverse_mask @spaces.GPU def remove_background(image_ori): original_size = image_ori.size image_preprocessor = ImagePreprocessor(resolution=(1024, 1024)) image_proc = image_preprocessor.proc(image_ori) image_proc = image_proc.unsqueeze(0) with torch.no_grad(): preds = birefnet(image_proc.to(device))[-1].sigmoid().cpu() pred = preds[0].squeeze() pred_pil = transforms.ToPILImage()(pred) pred_pil = pred_pil.resize(original_size, Image.BICUBIC) reverse_mask = ImageOps.invert(pred_pil) foreground = image_ori.copy() foreground.putalpha(pred_pil) background = image_ori.copy() background.putalpha(reverse_mask) torch.cuda.empty_cache() return foreground, background, pred_pil, reverse_mask # Custom CSS for styling custom_css = """ .title-container { text-align: center; padding: 10px 0; } #title { font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, Helvetica, Arial, sans-serif; font-size: 36px; font-weight: bold; color: #000000; padding: 10px; border-radius: 10px; display: inline-block; background: linear-gradient( 135deg, #e0f7fa, #e8f5e9, #fff9c4, #ffebee, #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6 ); background-size: 400% 400%; animation: gradient-animation 15s ease infinite; } @keyframes gradient-animation { 0% { background-position: 0% 50%; } 50% { background-position: 100% 50%; } 100% { background-position: 0% 50%; } } #submit-button { background: linear-gradient( 135deg, #e0f7fa, #e8f5e9, #fff9c4, #ffebee, #f3e5f5, #e1f5fe, #fff3e0, #e8eaf6 ); background-size: 400% 400%; animation: gradient-animation 15s ease infinite; border-radius: 12px; color: black; } /* Force light mode styles */ :root, :root[data-theme='light'], :root[data-theme='dark'] { --body-background-fill: white !important; --background-fill-primary: white !important; --background-fill-secondary: white !important; --block-background-fill: white !important; --panel-background-fill: white !important; --body-text-color: black !important; --block-label-text-color: black !important; } /* Additional overrides for dark mode */ @media (prefers-color-scheme: dark) { :root { color-scheme: light; } } """ with gr.Blocks(css=custom_css, theme=WhiteTheme()) as demo: gr.HTML('''
{.}
''') # Interface setup with input and output with gr.Row(): with gr.Column(): image_input = gr.Image(type="numpy", sources=['upload'], label="Upload Image") btn = gr.Button("Process Image", elem_id="submit-button") with gr.Column(): output_foreground = gr.Image(type="pil", label="Foreground") output_background = gr.Image(type="pil", label="Background") output_foreground_mask = gr.Image(type="pil", label="Foreground Mask") output_background_mask = gr.Image(type="pil", label="Background Mask") # Link the button to the processing function btn.click(fn=remove_background_wrapper, inputs=image_input, outputs=[ output_foreground, output_background, output_foreground_mask, output_background_mask]) demo.launch(debug=True)