Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,87 @@ import spacy
|
|
7 |
import gradio as gr
|
8 |
import en_core_web_trf
|
9 |
import numpy as np
|
|
|
|
|
|
|
10 |
|
11 |
dataset = load_dataset("gigant/tib_transcripts")
|
12 |
|
13 |
nlp = en_core_web_trf.load()
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def half_circle_layout(n_nodes, sentence_node=True):
|
16 |
pos = {}
|
17 |
for i_node in range(n_nodes - 1):
|
@@ -127,19 +203,23 @@ def convert_jraph_to_networkx_graph(jraph_graph: jraph.GraphsTuple) -> nx.Graph:
|
|
127 |
int(senders[e]), int(receivers[e]), edge_feature=edges[e])
|
128 |
return nx_graph
|
129 |
|
130 |
-
def plot_graph_sentence(sentence, graph_type="
|
131 |
# sentences = dataset["train"][0]["abstract"].split(".")
|
132 |
docs = dependency_parser([sentence])
|
133 |
if graph_type == "dependency":
|
134 |
graphs = construct_dependency_graph(docs)
|
135 |
elif graph_type == "structural":
|
136 |
graphs = construct_structural_graph(docs)
|
137 |
-
elif graph_type == "
|
138 |
graphs = construct_both_graph(docs)
|
|
|
|
|
139 |
g = to_jraph(graphs[0])
|
140 |
adj_mat = get_adjacency_matrix(g)
|
141 |
nx_graph = convert_jraph_to_networkx_graph(g)
|
142 |
pos = half_circle_layout(len(graphs[0]["nodes"]))
|
|
|
|
|
143 |
plot = plt.figure(figsize=(12, 6))
|
144 |
nx.draw(nx_graph, pos=pos,
|
145 |
labels={i: e for i,e in enumerate(graphs[0]["nodes"])},
|
@@ -160,6 +240,8 @@ def get_list_sentences(id):
|
|
160 |
return gr.update(choices = dataset["train"][id]["transcript"].split("."))
|
161 |
|
162 |
with gr.Blocks() as demo:
|
|
|
|
|
163 |
with gr.Tab("From transcript"):
|
164 |
with gr.Row():
|
165 |
with gr.Column():
|
|
|
7 |
import gradio as gr
|
8 |
import en_core_web_trf
|
9 |
import numpy as np
|
10 |
+
import benepar
|
11 |
+
import re
|
12 |
+
|
13 |
|
14 |
dataset = load_dataset("gigant/tib_transcripts")
|
15 |
|
16 |
nlp = en_core_web_trf.load()
|
17 |
|
18 |
+
benepar.download('benepar_en3')
|
19 |
+
nlp.add_pipe('benepar', config={'model': 'benepar_en3'})
|
20 |
+
|
21 |
+
def parse_tree(sentence):
|
22 |
+
stack = [] # or a `collections.deque()` object, which is a little faster
|
23 |
+
top = items = []
|
24 |
+
for token in filter(None, re.compile(r'(?:([()])|\s+)').split(sentence)):
|
25 |
+
if token == '(':
|
26 |
+
stack.append(items)
|
27 |
+
items.append([])
|
28 |
+
items = items[-1]
|
29 |
+
elif token == ')':
|
30 |
+
if not stack:
|
31 |
+
raise ValueError("Unbalanced parentheses")
|
32 |
+
items = stack.pop()
|
33 |
+
else:
|
34 |
+
items.append(token)
|
35 |
+
if stack:
|
36 |
+
raise ValueError("Unbalanced parentheses")
|
37 |
+
return top
|
38 |
+
|
39 |
+
class Tree():
|
40 |
+
def __init__(self, name, children):
|
41 |
+
self.children = children
|
42 |
+
self.name = name
|
43 |
+
self.id = None
|
44 |
+
def set_id_rec(self, id=0):
|
45 |
+
self.id = id
|
46 |
+
last_id=id
|
47 |
+
for child in self.children:
|
48 |
+
last_id = child.set_id_rec(id=last_id+1)
|
49 |
+
return last_id
|
50 |
+
def set_all_ids(self):
|
51 |
+
self.set_id_rec(0)
|
52 |
+
def print_tree(self, level=0):
|
53 |
+
to_print = f'|{"-" * level} {self.name} ({self.id})'
|
54 |
+
for child in self.children:
|
55 |
+
to_print += f"\n{child.print_tree(level + 1)}"
|
56 |
+
return to_print
|
57 |
+
def __str__(self):
|
58 |
+
return self.print_tree(0)
|
59 |
+
def get_list_nodes(self):
|
60 |
+
return [self.name] + [_ for child in self.children for _ in child.get_list_nodes()]
|
61 |
+
|
62 |
+
def rec_const_parsing(list_nodes):
|
63 |
+
if isinstance(list_nodes, list):
|
64 |
+
name, children = list_nodes[0], list_nodes[1:]
|
65 |
+
else:
|
66 |
+
name, children = list_nodes, []
|
67 |
+
return Tree(name, [rec_const_parsing(child) for i, child in enumerate(children)])
|
68 |
+
|
69 |
+
def tree_to_graph(t):
|
70 |
+
senders = []
|
71 |
+
receivers = []
|
72 |
+
for child in t.children:
|
73 |
+
senders.append(t.id)
|
74 |
+
receivers.append(child.id)
|
75 |
+
s_rec, r_rec = tree_to_graph(child)
|
76 |
+
senders.extend(s_rec)
|
77 |
+
receivers.extend(r_rec)
|
78 |
+
return senders, receivers
|
79 |
+
|
80 |
+
def construct_constituency_graph(docs):
|
81 |
+
doc = docs[0]
|
82 |
+
sent = list(doc.sents)[0]
|
83 |
+
print(sent._.parse_string)
|
84 |
+
t = rec_const_parsing(parse_tree(sent._.parse_string)[0])
|
85 |
+
t.set_all_ids()
|
86 |
+
senders, receivers = tree_to_graph(t)
|
87 |
+
nodes = t.get_list_nodes()
|
88 |
+
graphs = [{"nodes": nodes, "senders": senders, "receivers": receivers, "edge_labels": {}}]
|
89 |
+
return graphs
|
90 |
+
|
91 |
def half_circle_layout(n_nodes, sentence_node=True):
|
92 |
pos = {}
|
93 |
for i_node in range(n_nodes - 1):
|
|
|
203 |
int(senders[e]), int(receivers[e]), edge_feature=edges[e])
|
204 |
return nx_graph
|
205 |
|
206 |
+
def plot_graph_sentence(sentence, graph_type="constituency"):
|
207 |
# sentences = dataset["train"][0]["abstract"].split(".")
|
208 |
docs = dependency_parser([sentence])
|
209 |
if graph_type == "dependency":
|
210 |
graphs = construct_dependency_graph(docs)
|
211 |
elif graph_type == "structural":
|
212 |
graphs = construct_structural_graph(docs)
|
213 |
+
elif graph_type == "structural+dependency":
|
214 |
graphs = construct_both_graph(docs)
|
215 |
+
elif graph_type == "constituency":
|
216 |
+
graphs = construct_constituency_graph(docs)
|
217 |
g = to_jraph(graphs[0])
|
218 |
adj_mat = get_adjacency_matrix(g)
|
219 |
nx_graph = convert_jraph_to_networkx_graph(g)
|
220 |
pos = half_circle_layout(len(graphs[0]["nodes"]))
|
221 |
+
if graph_type == "constituency":
|
222 |
+
pos = nx.planar_layout(nx_graph)
|
223 |
plot = plt.figure(figsize=(12, 6))
|
224 |
nx.draw(nx_graph, pos=pos,
|
225 |
labels={i: e for i,e in enumerate(graphs[0]["nodes"])},
|
|
|
240 |
return gr.update(choices = dataset["train"][id]["transcript"].split("."))
|
241 |
|
242 |
with gr.Blocks() as demo:
|
243 |
+
with gr.Row():
|
244 |
+
graph_type = gr.Dropdown(label="Graph type", choices=["structural", "dependency", "structural+dependency", "constituency"], value="structural+dependency")
|
245 |
with gr.Tab("From transcript"):
|
246 |
with gr.Row():
|
247 |
with gr.Column():
|