File size: 18,553 Bytes
d974483
 
 
 
 
6251d81
 
 
 
9ae8acd
 
dbac20f
 
 
9ae8acd
 
 
 
 
dbac20f
9ae8acd
c4dd2de
6251d81
 
 
 
 
 
 
 
c4dd2de
 
 
 
 
dbac20f
6251d81
dbac20f
 
 
 
 
 
6251d81
 
c388283
 
6251d81
 
d974483
 
dbac20f
6251d81
f6c9d00
9ae8acd
d974483
ca607ce
 
 
f6c9d00
 
 
 
 
ca607ce
 
 
f6c9d00
 
 
 
 
 
 
 
 
 
 
 
ca607ce
 
 
d974483
b1e6cb0
 
 
 
 
 
 
f6c9d00
 
ca607ce
7a8cebd
f6c9d00
decba1f
8a61a4d
f6c9d00
 
 
9b8d878
46cfad8
 
 
 
 
 
 
 
 
 
 
decba1f
 
 
 
 
8a61a4d
decba1f
 
46cfad8
 
decba1f
1cfe547
 
 
 
decba1f
 
 
1cfe547
 
 
 
 
46cfad8
7a8cebd
 
 
9b8d878
 
1cfe547
46cfad8
decba1f
 
 
46cfad8
 
 
8a61a4d
7a8cebd
 
 
 
 
 
 
 
 
 
1cfe547
 
 
 
 
decba1f
 
1cfe547
8a61a4d
decba1f
0c5effb
9b8d878
 
8a61a4d
0c5effb
 
1cfe547
8a61a4d
1cfe547
 
 
decba1f
 
9b8d878
 
ca607ce
9ae8acd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9002f84
 
 
 
9ae8acd
9002f84
 
9ae8acd
9002f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46cfad8
 
 
 
 
 
 
 
 
9002f84
 
1cfe547
9002f84
 
 
 
 
9b8d878
46cfad8
 
9002f84
 
1cfe547
 
 
 
 
 
 
 
 
 
 
 
 
 
9002f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ae8acd
 
9002f84
 
9ae8acd
 
1b1ded9
 
 
9ae8acd
 
 
ca607ce
8bad790
 
 
9ae8acd
 
 
 
 
 
 
 
 
 
 
 
 
dbac20f
c388283
 
 
 
9ae8acd
 
 
 
 
c388283
 
 
 
 
 
 
9ae8acd
 
 
c388283
9ae8acd
 
c388283
9ae8acd
 
 
 
 
 
c388283
9ae8acd
 
 
 
 
dbac20f
c388283
9ae8acd
 
 
 
 
dbac20f
 
f6c9d00
 
 
 
 
 
9ae8acd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
# 1. ๋จผ์ € ๋กœ๊น… ์„ค์ •
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# 2. spaces๋ฅผ ๋จผ์ € import
import spaces

# 3. ๋‚˜๋จธ์ง€ imports
import os
import time
from datetime import datetime
import gradio as gr
import torch
import requests
from pathlib import Path
import cv2
from PIL import Image
import json
import torchaudio
import tempfile

# 4. GPU ์ดˆ๊ธฐํ™” ์„ค์ •
if torch.cuda.is_available():
    device = torch.device('cuda')
    logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
else:
    device = torch.device('cpu')
    logger.warning("GPU not available, using CPU")

try:
    import mmaudio
except ImportError:
    os.system("pip install -e .")
    import mmaudio

# ๋‚˜๋จธ์ง€ imports
from mmaudio.eval_utils import (ModelConfig, all_model_cfg, generate, load_video, make_video,
                                setup_eval_logging)
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio, get_my_mmaudio
from mmaudio.model.sequence_config import SequenceConfig
from mmaudio.model.utils.features_utils import FeaturesUtils

# ๋ฒˆ์—ญ ๋ชจ๋ธ import
from transformers import pipeline
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ko-en")

# API ์„ค์ •
CATBOX_USER_HASH = "30f52c895fd9d9cb387eee489"
REPLICATE_API_TOKEN = os.getenv("API_KEY")

# ์˜ค๋””์˜ค ๋ชจ๋ธ ์„ค์ •
dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

# 5. get_model ํ•จ์ˆ˜ ์ •์˜
def get_model() -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
    seq_cfg = model.seq_cfg

    net: MMAudio = get_my_mmaudio(model.model_name).to(device)
    if torch.cuda.is_available():
        net = net.to(dtype)
    net.eval()
    
    net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
    logger.info(f'Loaded weights from {model.model_path}')

    feature_utils = FeaturesUtils(
        tod_vae_ckpt=model.vae_path,
        synchformer_ckpt=model.synchformer_ckpt,
        enable_conditions=True,
        mode=model.mode,
        bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
        need_vae_encoder=False
    ).to(device)
    
    if torch.cuda.is_available():
        feature_utils = feature_utils.to(dtype)
    feature_utils.eval()

    return net, feature_utils, seq_cfg

# 6. ๋ชจ๋ธ ์ดˆ๊ธฐํ™”
model: ModelConfig = all_model_cfg['large_44k_v2']
model.download_if_needed()
output_dir = Path('./output/gradio')

setup_eval_logging()
net, feature_utils, seq_cfg = get_model()

@spaces.GPU(duration=30)
@torch.inference_mode()
def video_to_audio(video_path: str, prompt: str, negative_prompt: str = "music", 
                   seed: int = -1, num_steps: int = 15, 
                   cfg_strength: float = 4.0, target_duration: float = None):
    try:
        logger.info("Starting audio generation process")
        if torch.cuda.is_available():
            torch.cuda.empty_cache()

        
        # ๋น„๋””์˜ค ๊ธธ์ด ํ™•์ธ
        cap = cv2.VideoCapture(video_path)
        fps = cap.get(cv2.CAP_PROP_FPS)
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        video_duration = total_frames / fps
        cap.release()
        
        # ์‹ค์ œ ๋น„๋””์˜ค ๊ธธ์ด๋ฅผ target_duration์œผ๋กœ ์‚ฌ์šฉ
        target_duration = video_duration
        logger.info(f"Video duration: {target_duration} seconds")

        rng = torch.Generator(device=device)
        if seed >= 0:
            rng.manual_seed(seed)
        else:
            rng.seed()
            
        fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)

        # ๋น„๋””์˜ค ๊ธธ์ด์— ๋งž์ถฐ load_video ํ˜ธ์ถœ
        video_info = load_video(video_path, duration_sec=target_duration)
        
        if video_info is None:
            logger.error("Failed to load video")
            return video_path

        clip_frames = video_info.clip_frames
        sync_frames = video_info.sync_frames
        actual_duration = video_info.duration_sec
        
        if clip_frames is None or sync_frames is None:
            logger.error("Failed to extract frames from video")
            return video_path

        # ์‹ค์ œ ๋น„๋””์˜ค ํ”„๋ ˆ์ž„ ์ˆ˜์— ๋งž์ถฐ ์กฐ์ •
        clip_frames = clip_frames[:int(actual_duration * video_info.fps)]
        sync_frames = sync_frames[:int(actual_duration * video_info.fps)]
        
        clip_frames = clip_frames.unsqueeze(0).to(device, dtype=torch.float16)
        sync_frames = sync_frames.unsqueeze(0).to(device, dtype=torch.float16)
        
        # sequence config ์—…๋ฐ์ดํŠธ
        seq_cfg.duration = actual_duration
        net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)

        logger.info(f"Generating audio for {actual_duration} seconds...")


        logger.info("Generating audio...")
        with torch.cuda.amp.autocast():
            audios = generate(clip_frames,
                            sync_frames, 
                            [prompt],
                            negative_text=[negative_prompt],
                            feature_utils=feature_utils,
                            net=net,
                            fm=fm,
                            rng=rng,
                            cfg_strength=cfg_strength)

        if audios is None:
            logger.error("Failed to generate audio")
            return video_path

        audio = audios.float().cpu()[0]

        output_path = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4').name
        logger.info(f"Creating final video with audio at {output_path}")
        
        make_video(video_info, output_path, audio, sampling_rate=seq_cfg.sampling_rate)
        
        torch.cuda.empty_cache()
        
        if not os.path.exists(output_path):
            logger.error("Failed to create output video")
            return video_path
            
        logger.info(f'Successfully saved video with audio to {output_path}')
        return output_path

    except Exception as e:
        logger.error(f"Error in video_to_audio: {str(e)}")
        torch.cuda.empty_cache()
        return video_path
    
def upload_to_catbox(file_path):
    """catbox.moe API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ํŒŒ์ผ ์—…๋กœ๋“œ"""
    try:
        logger.info(f"Preparing to upload file: {file_path}")
        url = "https://catbox.moe/user/api.php"
        
        mime_types = {
            '.jpg': 'image/jpeg',
            '.jpeg': 'image/jpeg',
            '.png': 'image/png',
            '.gif': 'image/gif',
            '.webp': 'image/webp',
            '.jfif': 'image/jpeg'
        }
        
        file_extension = Path(file_path).suffix.lower()
        
        if file_extension not in mime_types:
            try:
                img = Image.open(file_path)
                if img.mode != 'RGB':
                    img = img.convert('RGB')
                    
                new_path = file_path.rsplit('.', 1)[0] + '.png'
                img.save(new_path, 'PNG')
                file_path = new_path
                file_extension = '.png'
                logger.info(f"Converted image to PNG: {file_path}")
            except Exception as e:
                logger.error(f"Failed to convert image: {str(e)}")
                return None

        files = {
            'fileToUpload': (
                os.path.basename(file_path),
                open(file_path, 'rb'),
                mime_types.get(file_extension, 'application/octet-stream')
            )
        }
        
        data = {
            'reqtype': 'fileupload',
            'userhash': CATBOX_USER_HASH
        }

        response = requests.post(url, files=files, data=data)
        
        if response.status_code == 200 and response.text.startswith('http'):
            file_url = response.text
            logger.info(f"File uploaded successfully: {file_url}")
            return file_url
        else:
            raise Exception(f"Upload failed: {response.text}")

    except Exception as e:
        logger.error(f"File upload error: {str(e)}")
        return None
    finally:
        if 'new_path' in locals() and os.path.exists(new_path):
            try:
                os.remove(new_path)
            except:
                pass

def add_watermark(video_path):
    """OpenCV๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋น„๋””์˜ค์— ์›Œํ„ฐ๋งˆํฌ ์ถ”๊ฐ€"""
    try:
        cap = cv2.VideoCapture(video_path)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        
        text = "GiniGEN.AI"
        font = cv2.FONT_HERSHEY_SIMPLEX
        font_scale = height * 0.05 / 30
        thickness = 2
        color = (255, 255, 255)
        
        (text_width, text_height), _ = cv2.getTextSize(text, font, font_scale, thickness)
        margin = int(height * 0.02)
        x_pos = width - text_width - margin
        y_pos = height - margin
        
        output_path = "watermarked_output.mp4"
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
            cv2.putText(frame, text, (x_pos, y_pos), font, font_scale, color, thickness)
            out.write(frame)
        
        cap.release()
        out.release()
        
        return output_path
        
    except Exception as e:
        logger.error(f"Error adding watermark: {str(e)}")
        return video_path

def generate_video(image, prompt):
    logger.info("Starting video generation with API")
    try:
        API_KEY = os.getenv("API_KEY", "").strip()
        if not API_KEY:
            return "API key not properly configured"

        temp_dir = "temp_videos"
        os.makedirs(temp_dir, exist_ok=True)

        image_url = None
        if image:
            image_url = upload_to_catbox(image)
            if not image_url:
                return "Failed to upload image"
            logger.info(f"Input image URL: {image_url}")

        generation_url = "https://api.minimaxi.chat/v1/video_generation"
        headers = {
            'authorization': f'Bearer {API_KEY}',
            'Content-Type': 'application/json'
        }

        payload = {
            "model": "video-01",
            "prompt": prompt if prompt else "",
            "prompt_optimizer": True
        }

        if image_url:
            payload["first_frame_image"] = image_url

        logger.info(f"Sending request with payload: {payload}")
        
        response = requests.post(generation_url, headers=headers, json=payload)
        
        if not response.ok:
            error_msg = f"Failed to create video generation task: {response.text}"
            logger.error(error_msg)
            return error_msg

        response_data = response.json()
        task_id = response_data.get('task_id')
        if not task_id:
            return "Failed to get task ID from response"

        query_url = "https://api.minimaxi.chat/v1/query/video_generation"
        max_attempts = 30
        attempt = 0

        while attempt < max_attempts:
            time.sleep(10)
            query_response = requests.get(
                f"{query_url}?task_id={task_id}",
                headers={'authorization': f'Bearer {API_KEY}'}
            )
            
            if not query_response.ok:
                attempt += 1
                continue

            status_data = query_response.json()
            status = status_data.get('status')

            if status == 'Success':
                file_id = status_data.get('file_id')
                if not file_id:
                    return "Failed to get file ID"

                retrieve_url = "https://api.minimaxi.chat/v1/files/retrieve"
                params = {'file_id': file_id}
                
                file_response = requests.get(
                    retrieve_url,
                    headers={'authorization': f'Bearer {API_KEY}'},
                    params=params
                )
                
                if not file_response.ok:
                    return "Failed to retrieve video file"

                try:
                    file_data = file_response.json()
                    download_url = file_data.get('file', {}).get('download_url')
                    if not download_url:
                        return "Failed to get download URL"

                    result_info = {
                        "timestamp": datetime.now().strftime("%Y%m%d_%H%M%S"),
                        "input_image": image_url,
                        "output_video_url": download_url,
                        "prompt": prompt
                    }
                    logger.info(f"Video generation result: {json.dumps(result_info, indent=2)}")

                    video_response = requests.get(download_url)
                    if not video_response.ok:
                        return "Failed to download video"

                    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
                    output_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
                    
                    with open(output_path, 'wb') as f:
                        f.write(video_response.content)

                    final_path = add_watermark(output_path)
                    
                    # ๋น„๋””์˜ค ๊ธธ์ด ํ™•์ธ
                    cap = cv2.VideoCapture(final_path)
                    fps = cap.get(cv2.CAP_PROP_FPS)
                    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
                    video_duration = total_frames / fps
                    cap.release()
                    
                    logger.info(f"Original video duration: {video_duration} seconds")
                    
                    # ์˜ค๋””์˜ค ์ฒ˜๋ฆฌ ์ถ”๊ฐ€
                    try:
                        logger.info("Starting audio generation process")
                        final_path_with_audio = video_to_audio(
                            final_path,
                            prompt=prompt,
                            negative_prompt="music",
                            seed=-1,
                            num_steps=20,
                            cfg_strength=4.5
                            # target_duration ์ œ๊ฑฐ - ์ž๋™์œผ๋กœ ๋น„๋””์˜ค ๊ธธ์ด ์‚ฌ์šฉ
                        )
                        
                        if final_path_with_audio != final_path:
                            logger.info("Audio generation successful")
                            try:
                                if output_path != final_path:
                                    os.remove(output_path)
                                if final_path != final_path_with_audio:
                                    os.remove(final_path)
                            except Exception as e:
                                logger.warning(f"Error cleaning up temporary files: {str(e)}")
                                
                            return final_path_with_audio
                        else:
                            logger.warning("Audio generation skipped, using original video")
                            return final_path
                            
                    except Exception as e:
                        logger.error(f"Error in audio processing: {str(e)}")
                        return final_path  # ์˜ค๋””์˜ค ์ฒ˜๋ฆฌ ์‹คํŒจ ์‹œ ์›Œํ„ฐ๋งˆํฌ๋งŒ ๋œ ๋น„๋””์˜ค ๋ฐ˜ํ™˜

                except Exception as e:
                    logger.error(f"Error processing video file: {str(e)}")
                    return "Error processing video file"

            elif status == 'Fail':
                return "Video generation failed"

            attempt += 1

        return "Timeout waiting for video generation"

    except Exception as e:
        logger.error(f"Error in video generation: {str(e)}")
        return f"Error in video generation process: {str(e)}"

css = """
footer {
    visibility: hidden;
}
.gradio-container {max-width: 1200px !important}
"""


with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
    gr.HTML('<div class="title">๐ŸŽฅ Dokdo Multimodalโœจ "Prompt guide for automated video and sound synthesis from images" </div>')
    gr.HTML('<div class="title">๐Ÿ˜„ Explore: <a href="https://huggingface.co/spaces/ginigen/theater" target="_blank">https://huggingface.co/spaces/ginigen/theater</a></div>')

    with gr.Row():
        with gr.Column(scale=3):
            video_prompt = gr.Textbox(
                label="Video Description",
                placeholder="Enter video description...",
                lines=3
            )
            upload_image = gr.Image(type="filepath", label="Upload First Frame Image")
            video_generate_btn = gr.Button("๐ŸŽฌ Generate Video")
            
        with gr.Column(scale=4):
            video_output = gr.Video(label="Generated Video")




# process_and_generate_video ํ•จ์ˆ˜ ์ˆ˜์ •
    def process_and_generate_video(image, prompt):
        if image is None:
            return "Please upload an image"
        
        try:
            # ํ•œ๊ธ€ ํ”„๋กฌํ”„ํŠธ ๊ฐ์ง€ ๋ฐ ๋ฒˆ์—ญ
            contains_korean = any(ord('๊ฐ€') <= ord(char) <= ord('ํžฃ') for char in prompt)
            if contains_korean:
                translated = translator(prompt)[0]['translation_text']
                logger.info(f"Translated prompt from '{prompt}' to '{translated}'")
                prompt = translated
        
            img = Image.open(image)
            if img.mode != 'RGB':
                img = img.convert('RGB')
    
            temp_path = f"temp_{int(time.time())}.png"
            img.save(temp_path, 'PNG')
    
            result = generate_video(temp_path, prompt)
        
            try:
                os.remove(temp_path)
            except:
                pass
            
            return result
            
        except Exception as e:
            logger.error(f"Error processing image: {str(e)}")
            return "Error processing image"


    video_generate_btn.click(
        process_and_generate_video,
        inputs=[upload_image, video_prompt],
        outputs=video_output
    )

if __name__ == "__main__":
    # GPU ์ดˆ๊ธฐํ™” ํ™•์ธ
    if torch.cuda.is_available():
        logger.info(f"Using GPU: {torch.cuda.get_device_name(0)}")
    else:
        logger.warning("GPU not available, using CPU")
    
    demo.launch(server_name="0.0.0.0", server_port=7860, share=False)