Spaces:
Sleeping
Sleeping
File size: 5,549 Bytes
dbac20f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# Copyright (c) 2024, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Improved diffusion model architecture proposed in the paper
"Analyzing and Improving the Training Dynamics of Diffusion Models"."""
import numpy as np
import torch
#----------------------------------------------------------------------------
# Variant of constant() that inherits dtype and device from the given
# reference tensor by default.
_constant_cache = dict()
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
value = np.asarray(value)
if shape is not None:
shape = tuple(shape)
if dtype is None:
dtype = torch.get_default_dtype()
if device is None:
device = torch.device('cpu')
if memory_format is None:
memory_format = torch.contiguous_format
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
tensor = _constant_cache.get(key, None)
if tensor is None:
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
if shape is not None:
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
tensor = tensor.contiguous(memory_format=memory_format)
_constant_cache[key] = tensor
return tensor
def const_like(ref, value, shape=None, dtype=None, device=None, memory_format=None):
if dtype is None:
dtype = ref.dtype
if device is None:
device = ref.device
return constant(value, shape=shape, dtype=dtype, device=device, memory_format=memory_format)
#----------------------------------------------------------------------------
# Normalize given tensor to unit magnitude with respect to the given
# dimensions. Default = all dimensions except the first.
def normalize(x, dim=None, eps=1e-4):
if dim is None:
dim = list(range(1, x.ndim))
norm = torch.linalg.vector_norm(x, dim=dim, keepdim=True, dtype=torch.float32)
norm = torch.add(eps, norm, alpha=np.sqrt(norm.numel() / x.numel()))
return x / norm.to(x.dtype)
class Normalize(torch.nn.Module):
def __init__(self, dim=None, eps=1e-4):
super().__init__()
self.dim = dim
self.eps = eps
def forward(self, x):
return normalize(x, dim=self.dim, eps=self.eps)
#----------------------------------------------------------------------------
# Upsample or downsample the given tensor with the given filter,
# or keep it as is.
def resample(x, f=[1, 1], mode='keep'):
if mode == 'keep':
return x
f = np.float32(f)
assert f.ndim == 1 and len(f) % 2 == 0
pad = (len(f) - 1) // 2
f = f / f.sum()
f = np.outer(f, f)[np.newaxis, np.newaxis, :, :]
f = const_like(x, f)
c = x.shape[1]
if mode == 'down':
return torch.nn.functional.conv2d(x,
f.tile([c, 1, 1, 1]),
groups=c,
stride=2,
padding=(pad, ))
assert mode == 'up'
return torch.nn.functional.conv_transpose2d(x, (f * 4).tile([c, 1, 1, 1]),
groups=c,
stride=2,
padding=(pad, ))
#----------------------------------------------------------------------------
# Magnitude-preserving SiLU (Equation 81).
def mp_silu(x):
return torch.nn.functional.silu(x) / 0.596
class MPSiLU(torch.nn.Module):
def forward(self, x):
return mp_silu(x)
#----------------------------------------------------------------------------
# Magnitude-preserving sum (Equation 88).
def mp_sum(a, b, t=0.5):
return a.lerp(b, t) / np.sqrt((1 - t)**2 + t**2)
#----------------------------------------------------------------------------
# Magnitude-preserving concatenation (Equation 103).
def mp_cat(a, b, dim=1, t=0.5):
Na = a.shape[dim]
Nb = b.shape[dim]
C = np.sqrt((Na + Nb) / ((1 - t)**2 + t**2))
wa = C / np.sqrt(Na) * (1 - t)
wb = C / np.sqrt(Nb) * t
return torch.cat([wa * a, wb * b], dim=dim)
#----------------------------------------------------------------------------
# Magnitude-preserving convolution or fully-connected layer (Equation 47)
# with force weight normalization (Equation 66).
class MPConv1D(torch.nn.Module):
def __init__(self, in_channels, out_channels, kernel_size):
super().__init__()
self.out_channels = out_channels
self.weight = torch.nn.Parameter(torch.randn(out_channels, in_channels, kernel_size))
self.weight_norm_removed = False
def forward(self, x, gain=1):
assert self.weight_norm_removed, 'call remove_weight_norm() before inference'
w = self.weight * gain
if w.ndim == 2:
return x @ w.t()
assert w.ndim == 3
return torch.nn.functional.conv1d(x, w, padding=(w.shape[-1] // 2, ))
def remove_weight_norm(self):
w = self.weight.to(torch.float32)
w = normalize(w) # traditional weight normalization
w = w / np.sqrt(w[0].numel())
w = w.to(self.weight.dtype)
self.weight.data.copy_(w)
self.weight_norm_removed = True
return self
|