Dokdo-multimodal / mmaudio /eval_utils.py
Rex Cheng
initial commit
dbac20f
raw
history blame
8.89 kB
import dataclasses
import logging
from pathlib import Path
from typing import Optional
import torch
from colorlog import ColoredFormatter
from torchvision.transforms import v2
from torio.io import StreamingMediaDecoder, StreamingMediaEncoder
from mmaudio.model.flow_matching import FlowMatching
from mmaudio.model.networks import MMAudio
from mmaudio.model.sequence_config import (CONFIG_16K, CONFIG_44K, SequenceConfig)
from mmaudio.model.utils.features_utils import FeaturesUtils
from mmaudio.utils.download_utils import download_model_if_needed
log = logging.getLogger()
@dataclasses.dataclass
class ModelConfig:
model_name: str
model_path: Path
vae_path: Path
bigvgan_16k_path: Optional[Path]
mode: str
synchformer_ckpt: Path = Path('./ext_weights/synchformer_state_dict.pth')
@property
def seq_cfg(self) -> SequenceConfig:
if self.mode == '16k':
return CONFIG_16K
elif self.mode == '44k':
return CONFIG_44K
def download_if_needed(self):
download_model_if_needed(self.model_path)
download_model_if_needed(self.vae_path)
if self.bigvgan_16k_path is not None:
download_model_if_needed(self.bigvgan_16k_path)
download_model_if_needed(self.synchformer_ckpt)
small_16k = ModelConfig(model_name='small_16k',
model_path=Path('./weights/mmaudio_small_16k.pth'),
vae_path=Path('./ext_weights/v1-16.pth'),
bigvgan_16k_path=Path('./ext_weights/best_netG.pt'),
mode='16k')
small_44k = ModelConfig(model_name='small_44k',
model_path=Path('./weights/mmaudio_small_44k.pth'),
vae_path=Path('./ext_weights/v1-44.pth'),
bigvgan_16k_path=None,
mode='44k')
medium_44k = ModelConfig(model_name='medium_44k',
model_path=Path('./weights/mmaudio_medium_44k.pth'),
vae_path=Path('./ext_weights/v1-44.pth'),
bigvgan_16k_path=None,
mode='44k')
large_44k = ModelConfig(model_name='large_44k',
model_path=Path('./weights/mmaudio_large_44k.pth'),
vae_path=Path('./ext_weights/v1-44.pth'),
bigvgan_16k_path=None,
mode='44k')
large_44k_v2 = ModelConfig(model_name='large_44k_v2',
model_path=Path('./weights/mmaudio_large_44k_v2.pth'),
vae_path=Path('./ext_weights/v1-44.pth'),
bigvgan_16k_path=None,
mode='44k')
all_model_cfg: dict[str, ModelConfig] = {
'small_16k': small_16k,
'small_44k': small_44k,
'medium_44k': medium_44k,
'large_44k': large_44k,
'large_44k_v2': large_44k_v2,
}
def generate(clip_video: Optional[torch.Tensor],
sync_video: Optional[torch.Tensor],
text: Optional[list[str]],
*,
negative_text: Optional[list[str]] = None,
feature_utils: FeaturesUtils,
net: MMAudio,
fm: FlowMatching,
rng: torch.Generator,
cfg_strength: float):
device = feature_utils.device
dtype = feature_utils.dtype
bs = len(text)
if clip_video is not None:
clip_video = clip_video.to(device, dtype, non_blocking=True)
clip_features = feature_utils.encode_video_with_clip(clip_video, batch_size=bs)
else:
clip_features = net.get_empty_clip_sequence(bs)
if sync_video is not None:
sync_video = sync_video.to(device, dtype, non_blocking=True)
sync_features = feature_utils.encode_video_with_sync(sync_video, batch_size=bs)
else:
sync_features = net.get_empty_sync_sequence(bs)
if text is not None:
text_features = feature_utils.encode_text(text)
else:
text_features = net.get_empty_string_sequence(bs)
if negative_text is not None:
assert len(negative_text) == bs
negative_text_features = feature_utils.encode_text(negative_text)
else:
negative_text_features = net.get_empty_string_sequence(bs)
x0 = torch.randn(bs,
net.latent_seq_len,
net.latent_dim,
device=device,
dtype=dtype,
generator=rng)
preprocessed_conditions = net.preprocess_conditions(clip_features, sync_features, text_features)
empty_conditions = net.get_empty_conditions(
bs, negative_text_features=negative_text_features if negative_text is not None else None)
cfg_ode_wrapper = lambda t, x: net.ode_wrapper(t, x, preprocessed_conditions, empty_conditions,
cfg_strength)
x1 = fm.to_data(cfg_ode_wrapper, x0)
x1 = net.unnormalize(x1)
spec = feature_utils.decode(x1)
audio = feature_utils.vocode(spec)
return audio
LOGFORMAT = " %(log_color)s%(levelname)-8s%(reset)s | %(log_color)s%(message)s%(reset)s"
def setup_eval_logging(log_level: int = logging.INFO):
logging.root.setLevel(log_level)
formatter = ColoredFormatter(LOGFORMAT)
stream = logging.StreamHandler()
stream.setLevel(log_level)
stream.setFormatter(formatter)
log = logging.getLogger()
log.setLevel(log_level)
log.addHandler(stream)
def load_video(video_path: Path, duration_sec: float) -> tuple[torch.Tensor, torch.Tensor, float]:
_CLIP_SIZE = 384
_CLIP_FPS = 8.0
_SYNC_SIZE = 224
_SYNC_FPS = 25.0
clip_transform = v2.Compose([
v2.Resize((_CLIP_SIZE, _CLIP_SIZE), interpolation=v2.InterpolationMode.BICUBIC),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
])
sync_transform = v2.Compose([
v2.Resize(_SYNC_SIZE, interpolation=v2.InterpolationMode.BICUBIC),
v2.CenterCrop(_SYNC_SIZE),
v2.ToImage(),
v2.ToDtype(torch.float32, scale=True),
v2.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
reader = StreamingMediaDecoder(video_path)
reader.add_basic_video_stream(
frames_per_chunk=int(_CLIP_FPS * duration_sec),
frame_rate=_CLIP_FPS,
format='rgb24',
)
reader.add_basic_video_stream(
frames_per_chunk=int(_SYNC_FPS * duration_sec),
frame_rate=_SYNC_FPS,
format='rgb24',
)
reader.fill_buffer()
data_chunk = reader.pop_chunks()
clip_chunk = data_chunk[0]
sync_chunk = data_chunk[1]
assert clip_chunk is not None
assert sync_chunk is not None
clip_frames = clip_transform(clip_chunk)
sync_frames = sync_transform(sync_chunk)
clip_length_sec = clip_frames.shape[0] / _CLIP_FPS
sync_length_sec = sync_frames.shape[0] / _SYNC_FPS
if clip_length_sec < duration_sec:
log.warning(f'Clip video is too short: {clip_length_sec:.2f} < {duration_sec:.2f}')
log.warning(f'Truncating to {clip_length_sec:.2f} sec')
duration_sec = clip_length_sec
if sync_length_sec < duration_sec:
log.warning(f'Sync video is too short: {sync_length_sec:.2f} < {duration_sec:.2f}')
log.warning(f'Truncating to {sync_length_sec:.2f} sec')
duration_sec = sync_length_sec
clip_frames = clip_frames[:int(_CLIP_FPS * duration_sec)]
sync_frames = sync_frames[:int(_SYNC_FPS * duration_sec)]
return clip_frames, sync_frames, duration_sec
def make_video(video_path: Path, output_path: Path, audio: torch.Tensor, sampling_rate: int,
duration_sec: float):
approx_max_length = int(duration_sec * 60)
reader = StreamingMediaDecoder(video_path)
reader.add_basic_video_stream(
frames_per_chunk=approx_max_length,
format='rgb24',
)
reader.fill_buffer()
video_chunk = reader.pop_chunks()[0]
assert video_chunk is not None
fps = int(reader.get_out_stream_info(0).frame_rate)
if fps > 60:
log.warning(f'This code supports only up to 60 fps, but the video has {fps} fps')
log.warning(f'Just change the *60 above me')
h, w = video_chunk.shape[-2:]
video_chunk = video_chunk[:int(fps * duration_sec)]
writer = StreamingMediaEncoder(output_path)
writer.add_audio_stream(
sample_rate=sampling_rate,
num_channels=audio.shape[0],
encoder='aac', # 'flac' does not work for some reason?
)
writer.add_video_stream(frame_rate=fps,
width=w,
height=h,
format='rgb24',
encoder='libx264',
encoder_format='yuv420p')
with writer.open():
writer.write_audio_chunk(0, audio.float().transpose(0, 1))
writer.write_video_chunk(1, video_chunk)